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Figure 1: We propose PhysCtrl, a novel framework for physics-grounded image-to-video generation
with physical material and force control. PhysCtrl supports generating physics-plausible motion
trajectories across multiple materials as control signals (second row), and allows controls over physics
parameters (e.g., Young’s Modulus E of elastic material (third row)) and force (last row). Note that
in the bottom three rows, overlaid trajectories and frames use lighter hues for earlier time steps and
darker hues for later ones.

Abstract

Existing video generation models excel at producing photo-realistic videos from
text or images, but often lack physical plausibility and 3D controllability. To
overcome these limitations, we introduce PhysCtrl, a novel framework for physics-
grounded image-to-video generation with physical parameters and force control.
At its core is a generative physics network that learns the distribution of physical
dynamics across four materials (elastic, sand, plasticine, and rigid) via a diffusion
model conditioned on physics parameters and applied forces. We represent physical
dynamics as 3D point trajectories and train on a large-scale synthetic dataset of
550K animations generated by physics simulators. We enhance the diffusion model
with a novel spatiotemporal attention block that emulates particle interactions
and incorporates physics-based constraints during training to enforce physical
plausibility. Experiments show that PhysCtrl generates realistic, physics-grounded
motion trajectories which, when used to drive image-to-video models, yield high-
fidelity, controllable videos that outperform existing methods in both visual quality
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and physical plausibility. Our code, model and data will be made publicly available
upon publication.

1 Introduction

Video generation has emerged as a transformative technology, powering applications in gaming [6,
72, 13], animation [9, 82, 24], autonomous driving [75, 77], digital avatars [28, 91], robotics [41].
Modern video generative models [54, 82, 84, 4] can produce photo-realistic videos from text or
single images. However, they often lack physical plausibility, controllability over dynamic physical
behaviors and high fidelity, because they are trained on massive 2D videos in a pure data-driven
manner [2, 3].

To achieve physics-grounded video generation, incorporating inductive biases of physical dynamics
is crucial. Driven by this, recent works have combined physics simulators [33, 1, 48] with neural
representations (e.g., Gaussian splats) to simulate rigid or non-rigid dynamics and render them into
videos [81, 34, 43, 7, 68] under scene-specific settings. While physics simulators based on Newtonian
mechanics can model the dynamics of diverse real-world systems—including soft/rigid bodies, fluids,
and gases [33, 51, 48], they suffer from high computational cost, sensitivity to hyperparameters
(e.g., simulation substeps, grid size), numerical instabilities, and trade-offs between generality and
accuracy. As a result, physics simulator–based video generation methods need to be tuned for specific
scenes and might lack robustness and suffer from slow speed (especially for inverse problems).

To address these issues, we propose PhysCtrl, a framework for physics-grounded image-to-video
generation with explicit control over physical parameters and external forces. A key component of
our framework is a generative physics network, a diffusion-based model that learns the distribution of
physical dynamics across various material types. Conditioned on physical parameters and applied
forces, it predicts physical dynamics that serve as control signals for pretrained video generative
models [22]. In our design, we address two fundamental questions to achieve robust, efficient, and
generalizable physics priors for controllable video generation:

1. What is an appropriate representation of physical dynamics for providing control in video models?
We seek a representation that enables efficient control of video models while generalizing across
a wide range of materials. Very recent work on controllable video generation [20, 22] has shown
that video models can synthesize rich and coherent content from only sparse and explicit point
controls. Meanwhile, point clouds offer greater flexibility and generalization for modeling different
materials than other explicit representations, such as meshes or voxel grids, making them more
suitable for learning-based generative physics networks. Considering these two aspects, we propose
to represent physical dynamics as 3D point trajectories, enabling compact motion encoding and
seamless integration with video generative models while supporting diverse material types.

2. How to embed generative physics priors across various materials into a network? High-quality and
diverse data are essential for learning the distribution of physical dynamics (i.e., generative physics).
We therefore collect a large-scale synthetic dataset of 550K object animations across four material
types (elastic, sand, plasticine, and rigid), capturing complex, physics-grounded dynamics via physics
simulators. Using this dataset, we design a diffusion model to generate physics-plausible 3D motion
trajectories conditioned on physical conditions. Inspired by particle dynamics [33], where particles
interact with neighbors to determine their next state, we introduce a novel spatiotemporal attention
block in the diffusion model to emulate these interactions: it first aggregates spatial influences from
neighboring points and then predicts each point’s trajectory over time. Finally, to embed explicit
physical knowledge directly into the network, we incorporate physics-based constraints during
training, ensuring that the generated motions are physics-plausible.

We conduct comprehensive evaluations of our method, demonstrating our model can produce physics-
plausible motion trajectories. We further show that the generated trajectories can drive pretrained
video models for synthesizing physically plausible image-to-video generation, outperforming existing
video generative models in both visual fidelity and physics plausibility. Our key contributions are:

• We introduce PhysCtrl, a novel and scalable framework that represents physics dynamics as 3D
point trajectories over time, enabling physics-grounded image-to-video generation with explicit
control over physical parameters and external forces.
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• We develop a diffusion-based point trajectory generative model equipped with a spatiotemporal
attention mechanism and physics-based constraints, efficiently learning generative physical
dynamics across four material types.

• We collect a large-scale synthetic dataset of 550K object animations, spanning elastic, sand,
plasticine, and rigid materials, using physics simulators. We will release this dataset to support
future research in physical dynamics learning.

• We demonstrate the effectiveness of PhysCtrl in generating realistic, physics-grounded dynamics
and achieve high-quality image-to-video generation results given user-specified physics parame-
ters and external forces.

2 Related Work

Neural Physical Dynamics Traditionally, physical dynamics are solved with numerical methods such
as finite element method (FEM) [92], position-based dynamics (PBD) [52, 47], material point method
(MPM) [33], smoothed-particle hydrodynamics (SPH) [16, 55, 38] and mass-spring systems [44].
Physical Informed Neural Networks (PINNs) [56] use neural networks to approximate the solution of
partial differential equations and incorporate physics constraints in the loss functions. Combined with
neural fields [50], PINNs achieve success in domains like fluids [12, 76] but are limited in per-scene
optimization setting. Concurrent work, ElastoGen [18], replaces part of the physics simulation
with neural networks for faster inference, but relies on a voxel representation, supports only elastic
materials, and requires a full 3D model as input. Graph Neural Networks (GNNs) have emerged
as an effective tool for modeling particle interactions with diverse material types [61, 83, 62, 85].
However, such approaches typically rely on next-step predictions for modeling dynamics, making
them susceptible to drift and error accumulation over time. In contrast, our method represents objects
as flexible point clouds and leverages a spatio-temporal trajectory diffusion model to robustly capture
the dynamics of diverse materials in a unified framework.

Controllable Video Generative Models Video generative models are trained on massive text-video
paired datasets and achieve high-quality video generation [27, 4, 37, 10, 84]. Existing works have
shown that additional control signals can be injected into pretrained models for controllable video
generation, such as camera movement [23, 19], human pose [28], and point movement [20, 22].
However, these models lack an understanding of physical laws and thus generate outputs that are
often not physically plausible. Furthermore, they cannot support explicit physics control. Our work
focuses on generating physics-grounded dynamics that can be used as a physics control signal for
video models.

Physics-Grounded Video Generation Existing methods leverage physics simulators to produce
physics-grounded videos. One approach reconstructs neural representations from multi-view images,
applies simulation on these representations, and then renders the results into video. For example,
PhysGaussian [81], Spring-Gaus [89], and Vid2Sim [8] integrate MPM, spring–mass systems, and
LBS-based simulation [51] into 3D Gaussians for simulation and rendering. VR-GS [34] applies
physics-aware Gaussian Splatting in VR/MR for real-time, intuitive 3D interaction and physics-based
editing. PhysDreamer [87] distills motions from video models to estimate physics parameters. These
methods are scene-specific and require high-quality 3D reconstruction to achieve good results. Re-
cently, researchers started to combine physics simulators with video generative models. PhysGen [43]
and PhysMotion [68] generate videos of 2D rigid body dynamics and deformable dynamics. Both
methods rely on physics simulators to generate dynamics and coarse texture and only use video
models for texture refinement. Compared with methods that rely on physics simulators, our method
embeds physics priors into a diffusion model, which avoids manual hyperparameter tuning and im-
proves numerical stability for dynamics prediction. The predicted dynamics can be used as guidance
for video generative models to synthesize physics-grounded and controllable videos.

4D Dynamics Parametric models have been widely used to represent category-specific deformable
shapes, such as SMPL and SMAL [46, 93] for human and animal bodies, FLAME [40] for faces,
MANO [59] for hands. Recent advances in 4D dynamics have been exploring to capture object
dynamics of arbitrary topologies [53, 49, 69, 39, 69, 11] with Neural-ODE and coordinate-MLPs.

With the success of diffusion models [26, 64, 65, 66] on high-quality generation on several modalities,
including text [21], image [58, 60], video [27, 25] and 3D [42, 63, 86, 45], researchers have started to
learn the distribution of object dynamics with diffusion models [17, 5, 88, 79]. Motion2VecSets [5]
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introduced a 4D representation with latent vector sets, and trained a conditional diffusion model for
dynamic reconstruction from sparse point cloud sequences. DNF [88] leverages a dictionary-based
neural field to learn a compact motion space for unconditional 4D generation. However, these
methods are only trained on datasets with a limited number of shapes that contain only human and
animal motions, while our method focuses on learning physics-grounded dynamics, which contain a
large variety of dynamic phenomena. We also use a more flexible point representation that is better
suited for downstream tasks.

3 Preliminary

We generate ground-truth point trajectories for training our generative physics network (also referred
to as “physics-grounded trajectory generative model") on data synthesized by physics simulators,
including MPM and rigid body simulators. Here we review the basics of MPM, which form the basis
for our physics-aware constraint in Section 4.

Material Point Method Material Point Method (MPM) [67, 57, 36, 33, 31, 29, 81] simulates the
deformation of discrete material particles under the assumption of continuum mechanics, where the
transformation of each particle from the material space to the world space is defined by a deformation
mapping x = ϕ(X, t), and the associated deformation gradient F = ∇Xϕ(X, t) measures the local
deformation of the material such as rotation and stretch. The evolution of ϕ at time t is governed by
the conservation of mass and momentum, which can be formulated as

ρ
Dv

Dt
= ∇ · σ + fext

Dρ

Dt
+ ρ∇ · v = 0 (1)

where ρ, v and fext denote the density, the velocity field and the per-unit volume external force
respectively. The Cauchy stress σ = 1

det(F)
∂Ψ
∂F (F)F

⊤ and the energy density function Ψ(F) are
derived from the deformation gradient F and physics parameters (e.g. Young’s modulus E and
Poisson’s ratio ν) related to specific constitutive models. Based on Equation (1), MPM associates
particles with background grids in the simulation, performing a particle-to-grid (P2G) and grid-to-
particle (G2P) transfer loop. For stepping t to t+ 1, the P2G transfer can be formulated as

mi

∆t
(vt+1

i − vt
i) = −

∑
p

V 0
p

∂Ψ

∂F
(Ft

p)F
t
p
⊤∇Ni(x

t
p) (2)

where p and i represent attributes for particle and grid. V 0
p is the initial particle volume and Ni(x

t
p)

is the B-spline kernel defined on i-th grid evaluated at xt
p. Grid mass mt

i =
∑

p Ni(x
t
p)mp and

grid momentum mt
iv

t
i =

∑
p Ni(x

t
p)mp(v

t
p +Ct

p(xi − xt
p)) are obtained according to the standard

APIC [32], where Ct
p is the affine matrix. The G2P transfer can be formulated as:

Ct+1
p =

4

(∆x)2

∑
i

Ni(x
t
p)v

t+1
i (xi − xt

p)
⊤ Ft+1

p = (I+∆t
∑
i

vt+1
i ∇Ni(x

t
p)

⊤)Ft
p (3)

Afterwards, vp and xp are updated as vt+1
p =

∑
i Ni(x

t
p)v

t+1
i and xt+1

p = xt
p +∆tvt+1

p .

4 Method

Given a monocular image, our method generates physics-grounded videos with the control signals of
physics parameters and external forces. As illustrated in Figure 2, we first lift the input image into 3D
points (Section 4.2), and then train a conditional diffusion model to generate physics-grounded point
cloud trajectories (Section 4.1) with physics parameters and external forces as conditioning. Finally,
we leverage the generated trajectories as condition to pre-trained video models for image-to-video
synthesis (Section 4.2).

4.1 Physics-Grounded Generative Dynamics

Our goal is to learn the distribution of physical dynamics across various materials — termed generative
dynamics — using a diffusion-based model, thereby avoiding the high cost, hyperparameter sensitivity,
numerical instabilities, and generality–accuracy trade-offs of classical simulators. We select point
clouds as our representation because they flexibly model diverse materials and suffice to control
pretrained video models. Specifically, each object is represented by 2048 points in practice; we
predict their trajectories over time and use them as control signals for video synthesis.
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Figure 2: An overview of PhysCtrl. Given a single image, we first lift the object in that image into
3D points. We then generate physics-grounded motion trajectories conditioned on physics parameters
and external force with a diffusion model, which are then used as strong physics-grounded guidance
for image-to-video generation.
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Figure 3: Our trajectory generation architec-
ture which consists of spatial attention and
temporal attention in each block.

Given an object, represented as a 3D point cloud with
N points P0 = {x0

i ∈ R3}Ni=1, and its physics param-
eters {E, ν}, our trajectory generative model generates
its dynamics given an initial force. Specifically, the dy-
namics of the object is represented by the position of each
point in future F timesteps P = P1:F = {Pf}Ff=1 =

{{xf
p}Np=1}Ff=1. Denote the force, drag point and bound-

ary condition (floor height) as f ∈ R3, D ∈ R3, and
h ∈ R1. Thus, the goal of PhysCtrl is to predict P under
the condition c = {P0, f ,D, {E, ν}, h, [mat]}. Here, we
use an additional [mat] token to denote different materials.
In this paper, we cover four different materials: elastic,
plasticine, sand, and rigid. Notably, because of our flex-
ible point cloud representation, the model is not limited to
these four categories and can be readily extended to other
materials, such as fluids, given sufficient computational
resources.

We train our trajectory generative model on data from
physics simulators—MPM [33] and a rigid-body solver.
Simulator hyperparameters (e.g., substeps, grid size) intro-
duce variability that our model, conditioning only on core
physics parameters, does not capture directly. To account
for this uncertainty, we employ a diffusion model to learn
the conditional distribution p(P|c). Our method can also be extended to learning physics from more
simulation methods since it requires only sampled points.

4.1.2 Physics-grounded Trajectory Generative model

Prior trajectory generative models for human motion synthesis [71, 90] typically project all point
positions into a single latent space, applying attention to only temporal correlations. This approach is
inadequate for our setting (see Figure 1), as it overlooks crucial spatial relationships. While naive 4D
attention across both space and time can model spatio-temporal correlations in physics simulation
data, it is suboptimal in terms of quality and efficiency due to the combinatorial explosion of spatial
points across time steps. Instead, since we aim to model point cloud trajectories with a one-to-one
point correspondence across frames, we introduce an efficient attention mechanism tailored for
physics simulation data, which first applies spatial attention followed by temporal attention. This
design reduces the computational complexity and, more importantly, reflects the underlying process
of physics simulation: first integrating information from neighboring points, then propagating forward
in time dimension.
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Specifically, given noisy point cloud sequences, we apply point embedding and project it to latent
dimensions, add sinusoidal positional embeddings in both space and time and predict its trajectory
offset with our denoising network D. The core of network D is a diffusion transformer consisting of
a set of spatial-temporal attention blocks as shown in Figure 3. Each block contains two attention
layers: spatial attention and temporal attention.

Spatial attention learns the correlation of each point with other points in the same frame with self-
attention. To inject physical conditioning c into the attention layer, we first map them into additional
tokens using MLPs: cond = MLPphys([f ;D; {E, ν}, h, [mat]]) ∈ Rdc . Then, we concatenate them
with point positions along the sequence dimension. Motivated by CogVideoX [84], we apply the
adaptive layer norm to positional tokens and physical tokens separately to facilitate the alignment
between the two spaces:

P̂f = SelfAttn
(
AdaLN([Pf ; cond])

)
, ∀f ∈ [1, F ] (4)

Temporal attention mainly aggregates information of the same point across all timesteps for temporal
consistency. We also apply attention to the input point cloud P0 for better trajectory learning.

T̂p = SelfAttn (AdaLN([Tp])) , ∀p ∈ [1, N ] (5)

where Tp = [x0
p,x

1
p,x

2
p, . . . ,x

F
p ] ∈ R(F+1)×d.

4.1.3 Training Losses

We train a standard diffusion model in which we add Gaussian noise ϵ of different levels t to the
entire point cloud sequence: Pt = αtP + σtϵ and then feed the noisy point cloud sequence into the
denoising network D. We use the signal-prediction formulation of diffusion models: P̂ = D(Pt, t, c).

Diffusion Loss We use MSE loss between the predicted and ground truth signal given noise samples:
Ldiff = EP∼q(P|c),t∼[1,T ]∥D(Pt; t, c)− P∥22 (6)

Velocity Loss We regulate the velocity across two frames, similar to that used in MDM [71]:

Lvel =
1

F − 1

F−1∑
f=1

∥(Pf+1 − Pf )− (P̂f+1 − P̂f )∥22 (7)

Physics Loss To enable the model to learn physics-plausible motion trajectories, we introduce a
physics-based supervision to enforce physical plausibility for the elastic, plasticine and sand material
from MPM. Specifically, we constrain the position and velocity of the predicted points to adhere to
the deformation gradient update (Equation (3)) across frames:

Lphys =
1

N(F − 2)

F−2∑
f=1

N∑
p=1

∥Ff+1
p −g(x̂f

p)F
f
p∥2 g(x̂f

p) = I+∆T
∑
i

v̂f+1
i ∇N(xi− x̂f

p)
⊤ (8)

where Ff+1
p and Ff

p are the ground-truth deformation gradient between adjacent frames and x̂f
p ∈ P̂f

is the predicted position. To obtain an approximation of grid velocity v̂f+1
i in Equation (8), we

perform one P2G and G2P step (Equation (2)) at each frame in training. This can be formulated as

v̂f+1
i =

∑
p Ni(x̂

f
p)mp(v̂

f+1
p +Cf

p(xi − x̂f
p))∑

p Ni(x̂
f
p)mp

(9)

where Cf
p is also from ground-truth and v̂f+1

p = (x̂f+2
p − x̂f

p)/(2∆T ). Note that we ignore the
stress term and use next-frame point velocity v̂f+1

p because it yields a more accurate approximation
when the frame interval ∆T is much larger than the substep interval ∆t for MPM simulation.

Boundary Loss To enforce the boundary condition of the ground, we add a penetration loss,
preventing the points from passing through the surface:

Lfloor =
1

N

F∑
f=1

N∑
p=1

(
max(h− x̂f

p , 0)
)2

(10)

Overall, our training loss is: L = Ldiff + λvelLvel + λphysLphys + λfloorLfloor.
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“A futuristic spiked UFO hovers above glowing 
clouds at sunset. It rotates counter clockwise and 
moves faraway with a steady motion.”
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“The chair was gently lifted upwards on the left 
seat back in a smooth, controlled motion, as if a 
gentle upwards force is dragging it on the left 
seat back. The background remains unchanged”

Figure 4: Qualitative comparison between our method and existing video generation methods.
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Figure 5: PhysCtrl generates videos of the same object under different physics parameters and forces.

4.2 Physics-grounded Image-to-Video Generation

Starting with a single image of 3D scene with objects, we first segment out [35] the objects and
generate novel view images for each object. We then feed both the novel views and the segmented
image into a multiview Gaussian reconstruction model [70] and extract a point cloud for the input
objects. We then use our trajectory generative model to generate the dynamics of that point cloud.
The generated 3D point trajectories are then projected to image space of the input camera viewpoint
to obtain the motion trajectories of each pixel. The projected pixel trajectories can be directly used as
conditioning signals for a pre-trained video generative model [22] to produce the final video.

5 Experiments

5.1 Evaluation on Image-to-Video Generation

Baselines We compare PhysCtrl with state-of-the-art controllable video generative models, including
Wan2.1-I2V-14B [74], CogVideoX [84], DragAnything [80], ObjCtrl-2.5D [78]. The first two
methods support image-to-video generation with text prompts. We use ChatGPT-4o to generate text
prompts based on the direction of the object movement. The last two achieve controllable video
generation with user-specified single-point trajectories. We use the trajectories of the drag point
generated by our model to prompt the model.

Quantitative Evaluation Since we are the first method to inject physics prior into a video model,
we utilize GPT-4o to evaluate three aspects of 12 generated videos in a 5-Likert score inspired by
VideoPhy [2]: (1) Semantic Adherence (SA): how well the content and motion in the video match
the description in the text prompt, especially the alignment with the force direction and position;
(2) Physical commonsense (PC): whether the object’s motion follows intuitive, physically plausible
dynamics given the applied force direction and position; (3) Video Quality (VQ): overall visual and
temporal quality of the video. Results in Table 1 show that our method achieve the best results across
all baselines. Results of user study can be found in the supplemental.

Qualitative Evaluation The qualitative results between our method and baselines can be found in
Figure 4. CogVideoX-5B [84] and Wan2.1 [74] have strong generation ability and partly follow the
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text prompts. However, they only use text prompts as conditions and lack precise control, thus, they
cannot produce motions that fully reflect physics laws. For example, the chair in Figure 4 doesn’t
move according to the force direction. DragAnything [80] uses purely 2D trajectories and cannot
distinguish between camera motion and object motion, thus sometimes generating camera motions
while objects remain static. More importantly, both DragAnything [80] and ObjCtrl2.5D [78] only
use coarse trajectory as a condition and struggle to generate more complex motions, e.g, the UFO
case in Figure 4 that contains both rotations and depth change. In comparison, PhysCtrl produces
physics-plausible videos that follow the given forces by generating physics-grounded 3D trajectories
as a strong conditional signal to guide the superior generation capability of pretrained video generative
models for video synthesis.

Table 1: Results of video evaluation.

SA↑ PC↑ VQ↑
DragAnything [80] 2.9 2.8 275

ObjCtrl [78] 1.5 1.3 1.4
Wan2.1 [74] 3.8 3.7 3.6

CogVideoX [84] 3.2 3.2 3.1
Ours 4.5 4.5 4.3

Table 2: Quantitative comparison on trajectory
generation.

Method vIoU↑ CD↓ Corr↓
M2V [5] 24.92% 0.2160 0.1064
MDM [71] 53.78% 0.0159 0.0240
Ours 77.03% 0.0030 0.0016
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Figure 6: Qualitative results: Compared to baselines, our method enables high-quality and coherent
generation of motion sequences from physics conditions and closely matches the reference.

Results on Varying Physical Conditions Since our trajectory generative model is conditioned on
external forces and physics parameters, we can generate videos of the same object under varying
conditions. As shown in Figure 5, we can change the Young’s modulus in elastic material to produce
results with different deformations given the same force. The direction and amplitude of the force can
also be adjusted to match the user’s desired motion. We found that Poisson’s ratio ν has negligible
influence on the generated trajectories, similar to the findings in PhysDreamer [87].

5.2 Evaluation on Generative Dynamics

Baselines We compare our approach with existing methods that focus on generative dynamics,
including Motion2VecSets [5] and MDM [71]. Motion2VecSets is a method for reconstructing sparse
point cloud sequences; we eliminate the sparse point cloud condition and introduce physics conditions
instead. MDM is primarily aimed at human motion generation, so we substitute human joints with
point clouds and incorporate physics conditions as additional tokens. For computation efficiency,
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we trained all baselines and ablations on our elastic subset of 160K objects that contains complex
deformations for metrics comparison.

Evaluation Metrics Following [39, 5], we adopt volume Intersection over Union (vIoU), Chamfer
Distance (CD) and L2-distance error for evaluation. vIoU measures the overlap between predicted
and ground truth point clouds, CD measures the averaged per-point pairwise nearest neighbor distance
between two point clouds, L2-distance is the Euclidean distance between two corresponding point
clouds. Each metric is calculated at each timestep separately and averaged across all frames.

Traj. (w/o physics loss)Point Cloud Traj. (Ours) Traj. (Reference) Traj. (w/o physics loss)Point Cloud Traj. (Ours) Traj. (Reference)

Figure 7: Comparison of using physics loss on trajectory generation. With physics loss, the results
are more closely aligned with the reference.
Results Table 2 shows the quantitative comparison of our method with other baselines. Our method
demonstrates the best performance over all metrics on the testing set. The qualitative comparison
can be found in Figure 1. Our model achieves physics-grounded and consistent generation of motion
trajectories. Motion2vecsets struggles to generate time-coherent motions because in our experiments,
there is no sparse point cloud condition in their original setting. M2V struggles to generate coherent
motions in our experiments. There are two potential reasons for this. Firstly, their model is originally
designed for point cloud completion, but in our setting, there is no sparse point cloud condition. Prior
work [88] also found that M2V does not work well in this situation. Secondly, their deformation
latent is encoded frame-by-frame without temporal interaction. MDM can generate consistent motion
sequences, but fails to capture detailed deformations because all points in a frame are projected into a
single latent. The superiority of our method is based on our spatial-temporal attention block, which
leverages explicit per-point correspondence.

Table 3: Ablation study on our trajectory generative model.
Method vIoU↑ CD↓ Corr↓
w/o spatial attention 28.88% 0.2700 0.1987
w/o temporal attention 54.92% 0.0664 0.0566
w/o physics loss 75.59% 0.0033 0.0018
Ours 77.03% 0.0030 0.0016

5.3 Ablation Study
The qualitative and quantitative results of the ablation study can be found in Figure 7 and Table 3.
Our physics loss improved all the metrics and makes the results of our trajectory generation close to
the ground truth. The physics loss aligns the updated deformation gradient with the ground truth and
constrains the predicted positions.

6 Conclusion and Limitations

In this paper, we introduce PhysCtrl, a novel framework for physics-grounded video generation
with physics parameters and force control. We design a diffusion model with spatial-temporal
attention blocks and physics-based supervision to effectively and efficiently learn complex physical
deformations directly on point cloud sequences. The generated motion trajectories can be used as a
strong conditional signal for pre-trained video generative models. Our experiments demonstrate that
PhysCtrl can generate physics-grounded dynamics and enable high-quality image-to-video generation
results conditioned on external forces and physics parameters.

Our approach currently focuses on single-object dynamics for four material types and does not
cover all possible materials. We also cannot model highly complex phenomena, such as multi-object
coupling or intricate boundary conditions. Future work includes addressing these limitations and
extending PhysCtrl to more diverse and complex physics phenomena in the real world.
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The supplementary material covers the following sections: Implementation Details Appendix A,
User study Appendix B, Physics Parameter Estimation Appendix C, Results Appendix D, Societal
Impacts Appendix E, Data and Model Safeguards Appendix F. We also encourage readers to refer
to our supplementary videos for demonstrations of animatable results..

A Implementation Details

Dataset. To make our model handle diverse objects and motion trajectories, we generate data
using physics simulation using high-quality 3D objects selected from ObjaverseXL [15, 14]. We
simulate animations for each object with the MPM simulator [33] as the ground-truth. We use a fixed
number of simulated points N = 2048 (uniformly sampled on the faces of the mesh) and frames
F = 24 to align with our model’s input. For data augmentation, we randomly rotate the object around
y-axis and add noise ϵaugp ∼ N (0, 0.012) to each sampled initial point. Our whole dataset contains
550K objects, including 150K elastic objects of different drag force directions, 100K objects of
gravity across elastic, sand, plasticine and rigid respectively. For the simulated animation of varying
drag force, we randomly sample a constant force f , a drag point D ∈ P0 and physics parameters
E ∈ [104, 107], ν ∈ [0.05, 0.45]. The force f has an outward direction of the object surface and a
magnitude between 0.02G and 0.3G in total (G is the gravity of the whole object) and is only applied
to points close to the drag point D.

Training For metric comparison and ablation, we train our base model on the 150K elastic subset
that contains different force and physical parameters with 6 layers and 256 latent size on 8 NVIDIA
L40 GPUs with 48GB GPU memory for 60K iterations with a total batch size of 32, which takes
about 30 hours. We randomly leave out 100 animations from this dataset as the test set and keep the
remaining ones for training. We train a large model of different materials with 12 layers and a 512
latent size on all 550K data with the same iterations and batch size, which takes about 80 hours. We
use AdamW optimizer with betas (0.9, 0.999) and a learning rate of 1e-4 with a cosine schedule and
a warmup of 100 steps. We clip the gradient with the maximum norm of 1.0 and train with bfloat16
precision. We use a 25-step DDIM scheduler for sampling, which takes about 1 second for the base
model and 3 seconds for the large model.

Image-to-3D Pipeline We use SAM [35] to segment the object in the input image and run SV3D [73]
to generate 20 novel-view images of that object with orbit camera poses, from which we pick three
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Table 4: Results of user study.
Ours CogVideoX Wan DragAnything ObjCtrl2.5D

Physics Plausibility 81.0% 5.5% 10.2% 1.2% 2.1%
Video Quality 66.0% 6.2% 18.3% 4.5% 5.0%

images with azimuth (90◦, 180◦, 270◦) relative to the input and send them together with the input
into LGM [70] for 3D Gaussian reconstruction. We then convert the 3D Gaussians to a plain point
cloud and sample N points using farthest point sampling (FPS) for trajectory generation.

GPT-4o Evaluation We prompt GPT-4o with the following prompt to use it for evaluation:

You are tasked with evaluating the quality of image-to-video generation
produced by a model.
For each test case, you will be given: 1. A text prompt describing
a single object and a force applied to it. The force’s position
and direction are visualized as a red arrow in the input image. 2.
An input image of the object. 3. Five sets of 10 evenly spaced
frames—each set corresponds to a video generated by a different model
from the same input.
Please evaluate this video based on the following three criteria using a
5-point Likert scale (1 = poor, 5 = excellent):
- Semantic Adherence: How well the content and motion in the video
match the description in the text prompt, especially the alignment with
the force direction and position. Note that the video should starts
with the input image.
- Physical Commonsense: Whether the object’s motion follows intuitive,
physically plausible dynamics given the applied force direction and
position.
- Video Quality: The overall visual and temporal quality of the video
(note that static or nearly-static sequences are less preferred).
Provide your evaluation for each video strictly in the following
one-line format:
Video i, Semantic Adherence score, Physical Commonsense score, Video
Quality score

B User Study

We conducted a user study to evaluate the physics plausibility and overall quality of the videos
generated by our model and other baselines. The study consisted of 12 questions, each including
an input image with the force location and direction marked on the image, a text prompt describing
the image and applied force, and generated video results produced by five different methods. The
users are asked to carefully observe the videos and evaluate them from two aspects: (1) Physics
plausibility: select the one that best matches the force direction (red arrow) and corresponding text
prompt. The force and text prompt are assumed to match each other. (2) Overall Video quality:
Select the one that has the best visual and temporal quality.

We received a total of 35 responses (35 × 12) and computed the percentage of times each method
was selected as the best-performing video for each question. The results are summarized in Table 4,
showing the preference rates for each method. The findings indicate that our model consistently
outperforms baseline methods in terms of both physics plausibility and video quality. Although Wan
received the second-best video quality, some of these high-quality videos suffer from low physics
plausibility.
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Table 5: Mean Absolute Error (MAE) of Young’s Modulus on physics parameter estimation.
Method Runtime (min.) MAE of log10(E)

Ours 2 0.506
Diff. MPM (5 iters) 20 0.439
Diff. MPM (15 iters) 60 0.394

C Physics Parameter Estimation

Our trained trajectory generation model learns the conditional distribution of physically plausible
motion trajectories, so it can also be used for inverse problems, i.e, to estimate the condition c given
ground truth trajectories P . The intuition is that a c that is closer to the ground truth will introduce
less discrepancy between the denoised trajectories and ground truth trajectories. To this end,
we define an energy function that measures how well the model can denoise a noisy version of Pt

under that condition:
E(c) = Et∼[1,T ]∥Pt −D(Pt; t, c)∥2, (11)

During optimization, the denoiser D is frozen and only c is optimizable. We add random noise to the
ground truth trajectory and feed it into the trained network to denoise. The gradient of the energy
function will be backpropagated to optimize c.

We simulate 15 trajectories for elastic materials to test our physics parameter estimation pipeline.
We compare our method with differentiable MPM [30], which needs to accumulate gradients over
hundreds of substeps for one backward pass (costing more than 3min compared to 0.1s for ours).
Table 5 shows that our method only takes about 2 minutes while achieving relatively good results,
which also demonstrates that our trained diffusion model captures physics-plausible motion
trajectories.

D More Results

More results of our method and baseline comparisons can be found in Figure 8. We strongly
encourage the readers to look at our video for better comparison, as isolated frames cannot
fully represent the physical dynamics well.

E Societal Impacts

Positive Impacts Our method integrates physically grounded simulation signals into video generative
models, offering new avenues for controllable and physically plausible video synthesis. These can
support people from amateurs to filmmakers and designers in rapidly prototyping ideas with accurate
physical behavior, democratizing access to high-fidelity visual tools.

Negative Impacts High-fidelity generative models, especially when conditioned on physical signals,
may be misused for creating deceptive content such as realistic yet fabricated disaster footage or
physically plausible fake videos. This poses risks for misinformation and erosion of public trust.
Although our approach enhances physical plausibility, it is important to note that the generated
outputs are not real-world occurrences.

F Data and Model Safeguards

Given the dual-use nature of video generation models, we recognize that our pretrained model could
be misused to generate deceptive, physically plausible videos for misinformation. As such, we will
implement appropriate safeguards to support controlled access when we release our model, including:
(1) requiring users to agree to usage guidelines and restrictions, (2) distributing the model under a
research-only license, (3) investigating automatic safety filters that can flag potentially harmful uses.
These steps aim to reduce the risk of malicious or unintended applications while still supporting
reproducible research.
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Our training data consists exclusively of synthetic point cloud trajectories representing object motion
under simulated physics. These datasets contain no images, videos, or human-related content, and
thus should pose no risk of visual misinformation, privacy violations, or unsafe content. All point
clouds are generated in simulation environments and contain only geometric and physical information
about object movement.
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“A soft, striped blanket lies flat on the ground, 
then slowly lifts upwards as if an upward force is 
dragging it in the middle”

“An orange starfish rotating clockwise towards 
the right, creating a smooth and natural 
motion”
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“A pair of wireless headphones rests on a white 
table before lifting into the air, as if there is an 
invisible force applied to its handle”

“A fighter jet flies at high speed in the sky 
and its nose tilts upward, lifting the entire 
aircraft”
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“the penguin is fully lifted upwards and float 
into the air with a natural motion, as if there is 
a force applied onto its left wing”

“the giraffe is dragged upwards toward the left 
and floating into the air with a natural motion, 
as if there is an upper left force.”

Figure 8: More qualitative comparison between our method and baselines.
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