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ABSTRACT
Neural Radiance Fields (NeRFs) have demonstrated impressive per-
formance in vision and graphics tasks, such as novel view synthesis
and immersive reality. However, the shape-radiance ambiguity of
radiance fields remains a challenge, especially in the sparse view-
points setting. Recent work resorts to integrating depth priors into
outdoor NeRF training to alleviate the issue. However, the criteria
for selecting depth priors and the relative merits of different priors
have not been thoroughly investigated. Moreover, the relative mer-
its of selecting different approaches to use the depth priors is also
an unexplored problem. In this paper, we provide a comprehensive
study and evaluation of employing depth priors to outdoor neural
radiance fields, covering common depth sensing technologies and
most application ways. Specifically, we conduct extensive experi-
ments with two representative NeRF methods equipped with four
commonly-used depth priors and different depth usages on two
widely used outdoor datasets. Our experimental results reveal sev-
eral interesting findings that can potentially benefit practitioners
and researchers in training their NeRF models with depth priors.
Project page: https://cwchenwang.github.io/outdoor-nerf-depth
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1 INTRODUCTION

Figure 1: Image and depth map visualization of ground
truth (top), trained with pure RGB (middle) and trained with
monocular depth estimation (bottom), from a testing view-
point. Even with a monocular depth (the quality is the worst
compared to other depth priors), the view synthesis can be
significantly improved for NeRF in terms of fewer floaters,
and better preservation of object shapes (cars or trees) com-
pared with using only RGB frames.

Novel view synthesis, i.e., synthesizing photorealistic images at
arbitrary viewpoints, is a long-standing task in computer vision
and multimedia. Recently, neural radiance fields (NeRF) [35] and
its variants have been a new selection for novel view synthesis and
achieved impressive performance. Specifically, NeRF represents a
3D scene by a continuous function, which takes a pair of 3D position
and 2D viewing direction as input to predict RGB color and volume
density. This enables us to render an image using standard volume
rendering equation [19]. The photorealistic renderings from NeRF
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motivate a large amount of recent work in multimedia area [54, 55,
60, 63, 69, 73].

Despite the impressive development of NeRF, defining a rea-
sonable underlying geometry from the radiance field is still an
unresolved issue. To tackle this problem, several works use distance
fields [30, 56] to explicitly define the geometry for NeRF frame-
works. However, these methods require a large number of input
images from different perspectives (normally 360-degree capturing
is required) to successfully reconstruct an object. In outdoor scenes,
there exist many foreground and background objects, and fully
capturing all of them is a difficult task. Using geometry priors, in
particular depth priors, to facilitate outdoor NeRF training is neces-
sary and has been proven effective in previous work [34, 42, 58, 61].
Specifically, raw LiDAR depth, depth completion, and depth estima-
tion are commonly used depth priors. Since they come at different
costs and vary in accuracy, it is important to further investigate the
criteria for selecting depth priors and the relative merits of them.

In this paper, we provide a comprehensive study and evaluation
of fusing a different modal input, i.e., depth priors, to outdoor neu-
ral radiance fields, covering common depth sensing technologies
and most application ways in the all-time study of neural radiance
fields. Specifically, depth sensing in outdoor scenes can be classified
into two categories: (1) Active depth sensing: methods that employ
optical devices to acquire depth. One major limitation is that the
optical devices, e.g., Light Detection and Ranging (LiDAR) are cum-
bersome and provide only sparse measurements. Depth completion
is thus proposed to recover a dense depth map from a sparse one.
(2) Passive depth sensing: methods directly infer depth from images,
which is a much cheaper choice but sacrifices accuracy. Monocular
and binocular depth estimation are two common methods. Experi-
mentally, we select two representative NeRF methods and augment
them with different depth supervision and different loss functions
on two popular outdoor autonomous driving datasets: KITTI [13]
and Argoverse [7]. As a result, we conclude the experimental results
and have interesting findings as follows:

• Density: Even a very sparse depth supervision can signif-
icantly boost the view synthesis quality, and generally the
denser the better.

• Quality: (1) Monocular depth is enough for sparse view in-
puts, which can even achieve comparable results with the
ground truth depth supervision; (2) depth supervision is an
option for dense view, i.e., it is necessary if the correspond-
ing application needs the employed NeRF to have a better
geometry, such as 3D reconstruction.

• Supervision: Complex depth filtering and loss function is
unnecessary in outdoor NeRF and directly cropping the sky
area with MSE supervision is enough.

To the best of our knowledge, our work is the first quantitative
and qualitative comparison of employing depth priors to outdoor
neural radiance fields and we believe our findings would be helpful
for practitioners and researchers to have a bigger picture of how to
effectively incorporate depth priors in training outdoor NeRFs.

2 RELATEDWORK

Neural Radiance Fields. Neural radiance fields (NeRFs) [36]
demonstrate superior effectiveness in novel view synthesis by

predicting the per-point color and radiance of a 3D scene with
a multi-layer perceptron (MLP). However, vanilla NeRF requires
hours of optimization and assumes static scenes along with dense
viewpoints. The following works have extended it in different as-
pects, e.g., modeling dynamic and deformable scenes [40], super-
resolution [55], sparse or imperfect poses [26], generalization to
target scenes [68] and fast optimization [12]. To enable using NeRF
in unbounded outdoor scenes, NeRF++ [74] introduces inverted
sphere parametrization to handle unbounded scenes. MipNeRF-
360 [2] re-parametrizes their scene coordinates with inverse-depth
spacing, achieving evenly-spaced ray intervals in unbounded re-
gions. In terms of large outdoor scenes, Block-NeRF [50] decom-
poses the scene into multiple blocks and trains a NeRF individually.
Recent work [59, 67] validates the applicability of outdoor NeRF to
autonomous driving simulation.

Depth Supervision for Neural Representations. Although
vanilla NeRF only needs RGB images for training, when input
viewpoints are sparse, the optimization can easily fall into local
minima due to shape-radiance ambiguity. Additional depth super-
vision has been found to be useful in this scenario. DS-NeRF [10]
firstly demonstrates the efficacy of depth information for NeRF with
sparse inputs using the coarse point clouds from structure-from-
motion. Dense depth priors [43] train an additional network for
depth completion and uncertainty estimation, demonstrating the
effectiveness of dense depth supervision. For street views, sparse Li-
DAR observations can be incorporated to supervise NeRF’s geome-
try [42, 58, 62]. Apart from using ground truth depth, existing works
also show that estimated monocular depth is also helpful in improv-
ing neural 3D reconstruction and view synthesis. MonoSDF [70]
findmonocular depth cueswith off-the-shelf predictors can improve
the quality and optimization time of neural surface reconstruction.
NICER-SLAM [77] also integrates monocular depth to facilitate
the mapping process in SLAM for indoor scenes. With the help of
point clouds from monocular depth estimation, NoPe-NeRF [4] and
Meuleman et al. [34] reconstruct NeRF and jointly estimate camera
poses from a sequence of frames.

Depth Recovery. Current depth recovery technology can be
roughly classified into three categories: (1) Depth completion. The
goal of depth completion is to recover a dense depth map from a
sparse one, e.g., the depth acquired from LiDAR. Depth completion
is divided into unguided methods and guided methods. Unguided
methods [11, 53, 66] aim at directly completing a sparse depth map
with a deep neural network. Guided methods [21, 28, 65] use RGB
images to complete sparse depth maps to dense. Several strategies
are proposed to improve the performance of depth completion, such
as early fusion [32, 41], late fusion [29, 51], residual depth mod-
els [25, 27], and spatial propagation network based networks [9, 39].
(2) Monocular depth estimation. The goal of monocular depth es-
timation is to estimate a depth map from a single image. Early
work mainly employs handcrafted feature [18, 44] to do monocular
depth estimation, which often fails in complicated scenes. Currently,
learning-based methods have shown their superiority, and encoder-
decoder networks [5, 8, 23, 46] are the most commonly used ar-
chitecture in this area. (3) Binocular depth estimation. The goal
of binocular depth estimation, i.e., stereo matching is to estimate
a disparity/depth map from a pair of stereo images. It is a classic
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task, and a well-known four-step pipeline [45] has been established.
The early learning-based method [31, 71] mainly employs a con-
volutional network to replace one step of the traditional pipeline,
i.e., feature extraction. GCNet [20] is a breakthrough, which first
proposes an end-to-end network to mimic the steps of the typi-
cal pipeline. Then, better feature extraction [24, 38], cost volume
construction [16, 17], cost aggregation [6, 64, 72], and disparity
computation [52, 76] are proposed by the follow-up methods to
optimize the pipeline further.

3 DEPTH-SUPERVISED NERF
As mentioned in Sec. 1, prior work has proved that depth priors
are beneficial for NeRF training, especially in outdoor scenes, and
multiple methods have been proposed to merge the depth prior into
the NeRF framework. Tab. 1 classifies the existing depth-supervised
NeRF methods, and two observations can be concluded from this
table:

• Multiple depth priors have been applied in depth-supervised
NeRF methods. However, all these methods only test one
kind of depth prior and do not compare with other ones.
Hence, the criteria for selecting depth priors and the relative
merits of different priors have not been thoroughly investi-
gated. Moreover, one available depth prior, binocular depth
estimation, is missed in all existing work.

• Existing depth-supervised NeRF methods have proposed
multiple loss functions to merge the depth prior into the
NeRF framework. Similar to the former one, the relative
merits of selecting different loss functions to use the depth
priors is also an unexplored problem.

Hence, it is necessary to provide a comprehensive study and evalu-
ation of employing depth priors to outdoor neural radiance fields.
Specifically, wewill give a classification of current depth-supervised
NeRF methods and employed depth priors in this section.

3.1 Taxonomy of Depth-supervised NeRF
NeRF [35] represents a 3D scene as a continuous function that
maps 3D positions x ∈ R3 and 2D view directions d ∈ R2 to
radiance colors c ∈ R3 and densities \ ∈ R. The function is typically
parametrized with a MLP 𝑓\ : (x, d) → (c, \ ). To render an image I,
we integrate the color along each camera ray r(𝑡) = o+𝑡d that shots
from the camera center o in direction d with volume rendering:

I\ (r) =
∫ 𝑡𝑓

𝑡𝑛

𝑇 (𝑡)𝜎 (r(𝑡))c(r(𝑡), d)d𝑡, (1)

where 𝑇 (𝑡) = exp(−
∫ 𝑡

𝑡𝑛
𝜎 (r(𝑡))d𝑡) denotes the accumulated trans-

mittance indicating the probability that a ray travels from 𝑡𝑛 to
𝑡 without hitting any particle. Similar to color, the depth map in
NeRF can be rendered as follows:

D\ (r) =
∫ 𝑡𝑓

𝑡𝑛

𝑇 (𝑡)𝜎 (r(𝑡))𝑡d𝑡 . (2)

Given a set of posed images I = {𝐼𝑖 |𝑖 = 0, 1, ..., 𝑁 }, vanilla NeRF
is optimized by comparing the mean-square error (MSE) between
rendered images and their ground truth: Lrgb

MSE =
∑𝑁
𝑖 | |𝐼𝑖 − 𝐼𝑖 | |22.

Follow-up works augment NeRF training with additional depth
information. To perform depth supervision, NeRF-based methods

Table 1: Classification of existing depth-supervised NeRF
methods.

Methods Depth priors Loss Type

DS-NeRF [10] SfM KL
Urban-NeRF [42] LiDAR URF

S-NeRF [62] Completion L1
MonoSDF [70] Mono MSE

NICER-SLAM [77] Mono MSE
NoPe-NeRF [4] Mono L1
FEGR [58] LiDAR L1

Table 2: Taxonomy of depth priors. (·) denotes an optional
selection.

Depth priors LiDAR Camera Cost Density

Raw LiDAR depth ✔ ✘ high sparse
Depth completion ✔ (✔) high dense
Monocular depth estimation ✘ ✔ low dense
Binocular depth estimation ✘ ✔ middle dense

first sample a batch of 𝑁𝑟 rays, then compare the rendered depth
and ground truth depth with different loss functions. Existing NeRF-
based methods use depth supervision from two aspects: direct or
indirect. Below we will introduce each category for more details.

Direct supervision. Direct supervisions directly compare the
depth rendered by NeRF with that of the depth prior using supervi-
sion loss, including MSE and L1:

L𝑑
MSE =

𝑁𝑟∑︁
𝑖

| |𝐷 (𝑟𝑖 ) − �̂� (𝑟𝑖 ) | |2, (3)

LL1 =
𝑁𝑟∑︁
𝑖

|𝐷 (𝑟𝑖 ) − �̂� (𝑟𝑖 ) |, (4)

where 𝐷 (𝑟𝑖 ) and �̂� (𝑟𝑖 ) are the predicted and ground truth depth of
ray 𝑟𝑖 . Both L1 and MSE loss are included in our experiment.

Indirect supervision. Indirect supervision uses depth prior to reg-
ularize the weights of NeRF, including the KL loss in DS-NeRF [10]
and URF loss in Urban-NeRF [42]:

LKL =

𝑁𝑟∑︁
𝑖

∑︁
𝑘

log𝑤𝑘 exp(− (𝑡𝑘 − 𝐷 (𝑟𝑖 ))2
2�̂�2

)Δ𝑡𝑘 , (5)

LURF =

𝐷 (𝑟𝑖 )−𝜖∑︁
𝑡=𝑡𝑛

𝑤 (𝑡)2 +
𝐷 (𝑟𝑖 )+𝜖∑︁

𝑡=𝐷 (𝑟𝑖 )−𝜖
(𝑤 (𝑡) − K𝜖 (𝑡 − 𝐷 (𝑟𝑖 ))2, (6)

where 𝐷 (𝑟𝑖 ) and �̂� (𝑟𝑖 ) are the predicted and ground truth depth
of ray 𝑟𝑖 ,𝑤𝑘 is the rendering weights of NeRF, 𝑡𝑘 and Δ𝑡𝑘 are the
sampled points and distances of ray 𝑟𝑖 , 𝑤 (𝑡) is the weight corre-
sponding to the point of distance 𝑡 , 𝜖 (𝑥) is a kernel that integrates
to one (i.e., a distribution) and has a bounded domain parameterized
by 𝜖 . As the URF loss has no open-source implementation, we select
the KL loss as the representative of indirect supervision.

3.2 Taxonomy of Depth Priors
As mentioned before, raw LiDAR depth, depth completion, monoc-
ular depth estimation, and binocular depth estimation are the main
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depth priors employed in outdoor neural radiance fields. The tax-
onomy result of current depth priors is shown in Tab. 2 and we can
conclude two observations from this table:

• Raw LiDAR depth and depth completion are LiDAR-based
methods. One major limitation of these methods is that the
employed LiDAR is cumbersome and provides only sparse
measurements. On that basis, depth completion is proposed
to recover a dense depth map from a sparse one.

• Monocular depth estimation and binocular depth estimation
are camera-based methods. These methods can directly in-
fer a dense depth from images, which is a much cheaper
selection while making a large compromise in accuracy.

Below we will introduce each method in more detail.

Raw LiDAR depth. The raw LiDAR depth can be directly acquired
from the employed optical devices, i.e., LiDAR. As the LiDAR only
provides sparse depth measurements, some methods also select to
combine multi-frame of the point cloud [14, 33] to get a denser
depth map.

Depth completion. Denote the input raw LiDAR depth as 𝐷𝑙 and
the corresponding image as 𝐼 . The depth completion process can
be represented as:

𝐷𝑔𝑢𝑖𝑑𝑒 = 𝛿 (𝐼 , 𝐷𝑙 ),
𝐷𝑢𝑛𝑔𝑢𝑖𝑑𝑒 = 𝛿 (𝐷𝑙 ),

(7)

where 𝐷𝑔𝑢𝑖𝑑𝑒 and 𝐷𝑢𝑛𝑔𝑢𝑖𝑑𝑒 denote unguided methods and guided
methods, respectively. Currently, the latter can achieve higher accu-
racy with guidance from the image. Note that the image information
is also the necessary input for NeRF. Hence, we select the guided
method MFFNet [29] as our depth completion method.

Monocular depth estimation. Encoder-decoder networks [3, 22,
49] are the most commonly used architecture for this task. Let us
define the input image as 𝐼 . The whole monocular depth estimation
process can be represented as:

𝐷𝑚𝑜𝑛𝑜 = 𝜑𝑑 (𝜑𝑒 (𝐼 )), (8)

where𝜑𝑒 denotes the encoder and𝜑𝑑 denotes the decoder.We select
a representative encoder-decoder network BTS [22] as our monoc-
ular depth estimation method. Note that this method is supervised
and the outputs have the correct scale. For self-supervised or zero-
shot pre-trained monocular depth estimation models, additional
scale and drift should be estimated during training.

Binocular depth estimation. Feature extraction, cost volume
construction, cost aggregation, and disparity computation are the
typical pipeline of current deep stereo matching methods. Denote
the input left and right images as 𝐼𝑙 and 𝐼𝑟 . The whole binocular
depth estimation process can be represented as:

𝑑 = [ (𝛿 (𝜕(𝑓\ (𝐼𝑙 ), 𝑓\ (𝐼𝑟 )))), (9)

where 𝑓\ is the feature extraction network, 𝜕 is the cost volume
construction network, 𝛿 is the cost aggregation network, and [ is
the disparity computation step. We select two representative stereo
matching networks CFNet [47] and PCWNet [48] as our binocular
depth estimation method.

4 EXPERIMENTS AND FINDINGS
In this section, we introduce the experiment settings and results of
this paper. More details can be found in the supplementary.

4.1 Dataset
KITTI [13] and Argoverse[7] are large datasets of real-world out-
door driving scenes. We evaluate and compare these methods on
selected fragments from the KITTI odometry and Argoverse stereo
sequences. In contrast to the object-centric datasets commonly used
in NeRF, the vehicles in autonomous driving scenarios usually only
move forward or turn. To reduce the influence of lighting changes
and moving objects, we finally select five sequences from Seq 00, 02,
05, 06 in KITTI (125, 133, 175, 295, 320 frames) and three sequences
from Argoverse (73, 72, 73 frames). Please refer to the supplemental
material for details. For each sequence, we hold every 10 frames as
the testing set, and the others are used for training. To verify the
impact of sparse viewpoints, we simulate low-frequency imaging
at 2.5Hz. To this end, we select 25% of KITTI training data, i.e.,
taking one for every 4. For the Argoverse dataset, we select 50%
of training data, since its data logging frequency (5Hz) is 1/2 of
that in KITTI (10Hz). We also make experiments on all the training
data, i.e., dense viewpoints. For the pose of the images, to avoid the
inconsistency between the structure from motion (SfM) pose and
the real depth scale, we use the poses provided by KITTI odometry
and tracking poses from Argoverse.

4.2 Evaluation Metrics
4.2.1 Photorealistic Metrics. We use the common metrics in the
novel view synthesis literature to compare the synthesized views
at testing viewpoints with the ground truth: PSNR, SSIM [57] and
LPIPS [75].

4.2.2 Depth Accuracy Metrics. Following previous work [15, 22],
we use ABSREL (Mean Absolute Relative Error) and RMSE (Root
Mean Squared Error) as our depth evaluation metrics.

4.3 Included NeRF Baselines
The original parametrization of NeRF can only deal with bounded or
forward-facing scenes. Since we deal with unbounded real scenes,
we select the following NeRF variants in our experiments.

NeRF++ [74] divides the unbounded scenes into two volumes:
an inner unit sphere and an outer volume. Therefore, the volume
rendering also consists of two parts. We render the depth in NeRF++
with an extended version of Eq. (2):

D(r) =
∫ 𝑡 ′

𝑡=0
𝜎 (r(𝑡))𝑡 · 𝑒−

∫ 𝑠

𝑠=0 𝜎 (r(𝑠 ) )d𝑠d𝑡 +

𝑒
−
∫ 𝑡 ′
𝑠=0 𝜎 (r(𝑠 ) )d𝑠 ·

∫ ∞

𝑡=𝑡 ′
𝜎 (r(𝑡))𝑡 · 𝑒−

∫ 𝑠

𝑠=𝑡 ′ 𝜎 (r(𝑠 ) )d𝑠d𝑡,
(10)

where 𝑡 ∈ (0, 𝑡 ′) is inside the sphere and 𝑡 ∈ (𝑡 ′,∞) is the un-
bounded area.

MipNeRF-360 [2] is an unbounded extension of MipNeRF [1],
which proposes to use a contract function to parameterize the 3D
Euclidean space within a ball of the radius of 2. For MipNeRF-360,
we can directly render images and depth maps in the contracted
space with Eq. (1) and Eq. (2).

https://cwchenwang.github.io/outdoor-nerf-depth/data/supp.pdf
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Table 3: Quantitative comparison with selected methods on the KITTI dataset. The best and the second best results are shown
in bold and underlined forms, respectively.

Dense Sparse
Methods Depth Supervision PSNR↑ SSIM↑ LPIPS↓ RMSE↓ ABSREL↓ PSNR↑ SSIM↑ LPIPS↓ RMSE↓ ABSREL↓

MipNeRF-360 [2]

RGB-Only 21.99 0.692 0.437 3.090 0.088 16.93 0.589 0.498 4.662 0.144
GT Depth 21.84 0.682 0.451 0.918 0.032 19.14 0.630 0.474 1.044 0.040
Depth Completion 21.51 0.670 0.467 0.818 0.026 19.65 0.631 0.482 1.030 0.032
Stereo Depth 21.53 0.665 0.469 1.192 0.030 19.80 0.637 0.475 1.246 0.034
Mono Depth 21.48 0.668 0.468 2.161 0.059 19.35 0.625 0.485 1.890 0.058

NeRF++ [74]

RGB-Only 20.29 0.520 0.585 48.638 3.917 17.60 0.535 0.562 56.253 4.960
GT Depth 20.08 0.574 0.563 1.914 0.078 18.90 0.554 0.568 1.882 0.089
Depth Completion 20.15 0.576 0.560 2.618 0.102 18.90 0.553 0.569 2.022 0.094
Stereo Depth 20.10 0.575 0.560 1.934 0.087 18.85 0.550 0.574 2.061 0.100
Mono Depth 19.87 0.566 0.567 2.256 0.092 18.74 0.548 0.574 2.670 0.110

Instant-NGP [37]

RGB-Only 20.51 0.630 0.460 9.575 0.507 15.44 0.499 0.536 15.011 0.793
GT Depth 21.31 0.650 0.444 1.571 0.052 18.53 0.586 0.469 1.751 0.060
Depth Completion 20.90 0.632 0.470 1.661 0.050 18.62 0.576 0.492 1.833 0.059
Stereo Depth 20.93 0.629 0.472 1.830 0.057 18.60 0.574 0.493 1.984 0.064
Mono Depth 20.59 0.617 0.483 2.679 0.085 18.17 0.557 0.502 2.868 0.096

Table 4: Quantitative evaluations of depth prior on the KITTI dataset with the selected sequences. Please refer to the previous
work [15, 22] for the specific definition of evaluation metrics.

Methods 𝛿 <1.25↑ 𝛿 <1.252 ↑ 𝛿 <1.253 ↑ ABSREL↓ Sq Rel↓ RMSE↓ RMSE log↓ Density

Monocular Estimation 0.970 0.997 0.999 0.058 0.156 2.020 0.085 100%
Stereo Matching 0.996 0.998 0.999 0.016 0.035 1.080 0.040 100%
Stereo Matching_confidence 0.999 0.999 0.999 0.014 0.016 0.71 0.025 92.28%
Depth Completion 0.998 1.000 1.000 0.010 0.015 0.622 0.020 100%

Instant-NGP [37] proposes a novel scene representation that bounds
an actual scene into an axis-aligned bounding box and uses a small
neural network augmented by a multi-resolution hash table of train-
able feature vectors whose values are optimized through stochastic
gradient descent. The features are further mapped to color and
density. Since it still uses standard volume rendering, the depth in
Instant-NGP can be similarly rendered as in vanilla NeRF (Eq. (2)).

4.4 Evaluation Results and Comparisons
In this section, we conduct experiments on both Argoverse and
KITTI datasets to verify the relative merits of employing different
depth priors. Below we describe each dataset’s result in more detail.

KITTI The qualitative depth-supervised NeRF results and cor-
responding depth prior quality evaluation can be found in Tab. 3
and 4. As shown in Tab. 4, the performance gap between different
depth priors is large. Specifically, depth completion has the highest
accuracy then goes with binocular depth estimation and monocular
depth estimation. Below we will further analyze the relative merits
of employing different depth priors to dense and sparse views.

(1) Sparse view.We first discuss the experiment result on the
sparse view setting. As shown, NeRF trained with pure RGB suffers
from heavy shape-radiance ambiguity (Fig. 2), so the view synthesis
quality at novel viewpoints degrades significantly. In this case, the
importance of depth information is evident, and we can see from

Tab. 3 that any type of depth can be conducive and greatly improve
the synthesized views. Taking MipNeRF-360 as an example, we
can see 11.55%∼14.49% photorealistic metrics improvement (PSNR)
and 59.72%∼77.78% depth accuracy metrics improvement (ABSREL)
with any type of depth prior. Moreover, we can observe that the
photorealistic performance gain of using different depth prior is
close even if the depth quality gap between different depth priors is
large. That is, we can employ the cheapest depth prior (i.e.,monocu-
lar depth estimation) to achieve similar performance improvement
with the costly depth prior (e.g., the ground truth depth collected
by LiDAR). A similar situation can be observed on Instant-NGP.
Hence, we can get our finding 1: Monocular depth is enough
for sparse view. Our first counter-intuitive finding is that using
monocular depth estimation can significantly improve the qual-
ity of NeRF and even achieve comparable results with the ground
truth depth supervision in sparse view. Generally, the monocular
depth estimation is a cheaper selection and does not need addi-
tional equipment, e.g., LiDAR. Thus, monocular depth estimation is
a better selection in sparse view and binocular depth estimation is
also an option if you need better depth map quality.

(2) Dense view.We then discuss the experiment result on the
dense view setting. As shown, depth supervision is also helpful for
the depth accuracy metrics. Taking MipNeRF-360 as an example,
we can see 32.96%∼70.45% depth accuracy metrics improvement
(ABSREL) with any type of depth prior. That is the depth prior
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Figure 2: Qualitative results on the KITTI dataset with MipNeRF-360 with sparse viewpoints. Compared with training with
RGB, adding depth supervision improves quality significantly. Better viewed zoomed-in and in-color.

Table 5: Evaluation and comparison of MipNeRF-360 and Instant-NGP on the Argoverse dataset. The best and the second best
results are shown in bold and underlined forms, respectively.

Dense Sparse
Methods Depth Supervision PSNR↑ SSIM↑ LPIPS↓ RMSE↓ ABSREL↓ PSNR↑ SSIM↑ LPIPS↓ RMSE↓ ABSREL↓

MipNeRF-360 [2]

RGB-Only 29.35 0.855 0.446 6.113 0.120 25.81 0.829 0.468 6.971 0.139
GT Depth 28.78 0.846 0.458 2.251 0.044 28.01 0.840 0.462 2.443 0.048
Stereo Depth 28.32 0.837 0.470 4.271 0.064 27.72 0.833 0.471 4.310 0.067
Mono Depth 28.58 0.841 0.466 4.601 0.093 28.04 0.836 0.468 4.868 0.093

Instant-NGP [37]

RGB-Only 28.07 0.847 0.450 13.478 0.493 22.18 0.816 0.494 17.439 0.593
GT Depth 28.92 0.847 0.450 1.804 0.045 27.38 0.834 0.460 1.881 0.048
Stereo Depth 28.32 0.839 0.460 5.613 0.090 27.10 0.828 0.467 5.843 0.097
Mono Depth 28.31 0.838 0.466 6.083 0.122 26.97 0.829 0.471 6.643 0.132

is still essential for the radiance field to obtain a reasonable un-
derlying geometry. On the other hand, the performance gain in
photorealistic metrics is not so noteworthy (Instant-NGP) or even
causes a performance drop in some methods (MipNeRF-360). We
attribute the drop in performance to inconsistent optimization di-
rections for depth and RGB under contraction functions since one
of the main differences between Instant-NGP and MipNeRF-360
is the usage of unbounded contraction. As a result, we can get
our finding 2: depth supervision is an option for dense view.
Our second interesting finding is that using depth supervision can
achieve significant geometry improvement and trivial photorealis-
tic metrics improvement in dense view. Thus, depth supervision is
an option in dense view. It is still necessary if the corresponding
application needs the employed NeRF to have a better geometry,
such as reconstruction and potentially relighting, shadowing, etc.

Argoverse We also experimented on the Argoverse dataset to
further verify our claim. Please note that the Argoverse dataset does
not provide the depth completion task, so we do not include this
setting in the experiment. The qualitative results can be found in
Tab. 5. As shown, the view synthesis quality at novel viewpoints also
degrades significantly in sparse views, and any depth can greatly
improve the synthesized views. We also observe significant depth
accuracy metrics improvement and trivial photorealistic metrics
for the dense view setting. The situation is the same with the KITTI
dataset, which further supports the validity of our findings 1&2.

4.5 Ablation Study
Although experimental results in Sec. 4.5 has demonstrated the
relative merits of employing different depth priors, there are still
many underlying settings that can reveal more profound findings,
such as the impact of different depth densities, depth range, con-
fidence level, depth loss function, etc. In this section, we conduct
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Figure 3: Qualitative results on the Argoverse dataset with MipNeRF-360 with sparse viewpoints (the GT depth is dilated with a
3 × 3 kernel for better visualization, which is extremely sparse). Compared with training with RGB, adding depth supervision
improves quality significantly. Better viewed zoomed-in and in-color.
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Figure 4: The relationship between PSNR and the density
ratio of depth supervision under different types of depth
priors.

several ablation experiments on one sequence of the KITTI dataset
with MipNeRF-360 and sparse view setting to further explore those
factors.

4.5.1 Density. Density is the main factor that differentiates the
LiDAR ground truth from other depth priors, e.g. the density of
LiDAR ground truth on the KITTI dataset is nearly 20%, and the
other depth priors is 100%. We conduct two ablation experiments
to further investigate the influence of different densities.

GT Masking It is interesting that monocular depth estimation
can achieve on-par or even better performance than ground truth
LiDAR in photorealistic metrics. This is likely because monocular
depth is much denser than LiDAR, which only provides valid depth
gt for around 20% of pixels. To verify this hypothesis, we try to
use the invalid location of ground truth LiDAR to mask out the
monocular depth estimation result and make sure the two depth
priors have the same density. The results show that the photoreal-
istic performance of using monocular depth drops to be close to or
inferior to using ground truth depth after masking. This indicates
that even imprecise dense supervision can still be more beneficial
than sparse one in sparse views for novel view synthesis.

Depth Density To further evaluate the influence of supervision
sparsity, we also test different depth densities by iteratively remov-
ing a fixed proportion of pixels from the original depth priors. The
results in Fig. 4 show that a tiny amount (5%) of depth supervision
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is enough to improve the performance of NeRF, and a denser depth
supervision can achieve a more considerable gain. Specifically, the
improvement is more significant before 20%, and the results become
stable after enough supervision (40%). Moreover, we also observe
that even with randomly selected less than 20% of monocular depth
supervision (or depth completion and stereo depth), the results al-
ready surpass using all the ground truth (22%), which indicates that
imprecise while covering a wider range of areas supervision (e.g.,
monocular depth estimation) is better than accurate while limited
in central regions supervision (e.g., LIDAR) in sparse view. The GT
Masking experiment further supports our claim, i.e., a sparse and
covering the same region monocular depth estimation cannot beat
the ground truth LIDAR supervision.

Considering the above experiments, we can obtain our finding 3:
The denser the better. Our third interesting finding is that even a
very sparse depth supervision can significantly boost the quality of
novel view synthesis in sparse view, and generally, we observe that
the denser the depth, the better quality of novel view synthesis we
can obtain.

4.5.2 Depth Loss Type. Apart from MSE, we also test L1 and KL
losses. As shown in Tab. 6, there are no significant performance
differences between L1 and MSE loss. Moreover, KL loss is sig-
nificantly worse than MSE, possibly because it is an indirect loss
function and has a strong constraint in NeRF optimization, which
would cause adverse effects if the depth estimation is not accurate
enough.

4.5.3 Depth Filtering. The quality of depth varies widely among
different methods. Generally, the quality degrades from completion
to stereo, and finally to monocular (refer to Tab. 4). To address
the unstable presentation of depth quality in many downstream
tasks, there exist a few approaches to filter certain depth values
and only use a subset of them. In this study, we choose two simple
and widely-used depth filtering approaches, i.e., threshold clipping
and confidence-based filtering, to investigate the influence.

Threshold Clipping In Tab. 5 and Tab. 3, we use depth prediction
from different methods directly (cropping the sky area). Generally,
the background area (far location) is less accurate than the fore-
ground area (close location). Here, we test the impact of filtering out
predictions farther than the threshold, i.e., large than a threshold
𝑠 . In our experiments, we set 𝑠 as 40𝑚 and 80𝑚. The results are
shown in Tab. 6. We can see that there are no significant differences
in both image and depth metrics before and after clipping with
𝑠 = 80𝑚. For 𝑠 = 40𝑚, the image and depth metrics drop a little,
likely because it lost the depth information of the background area,
although it is less accurate than the foreground area.

Confidence-based Filtering Confidence estimation is also a com-
mon operation in both depth estimation and depth-supervised NeRF.
Here, we test such confidence filters in binocular depth estimation
as an example. Specifically, the confidence filters are implemented
by the uncertainty estimation proposed in CFNet. The correspond-
ing depth quality evaluation result is shown in Tab. 4. From Tab. 6,
we can see that similar to threshold clipping, after filtering, the
performance has no notable change.

Table 6: Ablation study with GTmasking, threshold clipping,
confidence filtering, and loss function.

Experiments Factor Depth Type PSNR↑ SSIM↑ LPIPS↓ RMSE↓ ABSREL↓
- RGB-Only - 14.80 0.475 0.551 4.569 0.153

GT
Masking

- LiDAR 17.47 0.542 0.507 1.173 0.045
Yes Mono 17.11 0.535 0.512 2.345 0.076
No Mono 17.97 0.542 0.510 2.383 0.073

Threshold
Clipping

- Mono 17.97 0.542 0.510 2.383 0.073
40m Mono 17.60 0.541 0.509 2.470 0.071
80m Mono 18.18 0.542 0.510 2.390 0.073

Confidence
Filtering

No Stereo 18.87 0.562 0.501 1.349 0.0405
Yes Stereo 18.85 0.565 0.495 1.467 0.0424

Loss
Function

MSE Mono 17.97 0.542 0.510 2.383 0.073
L1 Mono 17.91 0.519 0.550 2.543 0.075
KL Mono 16.55 0.526 0.515 2.487 0.076

Finding 4: Simple loss function and depthfiltering are enough.
The above three ablation studies lead to our fourth finding: Com-
plex depth filtering and loss function is unnecessary in outdoor
NeRF and directly cropping the sky area (point at infinity) with
MSE supervision is enough.

4.6 Discussion
Similar to DS-NeRF [10], we also conduct experiments by train-
ing Instant-NGP for 30 epochs and found that additional depth
accelerates convergence speed and is also beneficial in the
extreme few-shot setting. In the sparse setting, training with
depth surpasses the training with only RGB with 30 epochs, even
at the first epoch. For extremely sparse views, we further select
1/8, 1/16 of the input views for training in the Kitti dataset. The
resulting PSNR/LPIPS is 13.1/0.57 (RGB Only), 16.4/0.52 (Monocu-
lar depth) for 1/8, and 11.6/0.61 (RGB Only), 13.0/0.57 (Monocular
depth) for 1/16. Using other depth supervision is even better than
using monocular depth.

5 CONCLUSION
This paper presents the first in-depth study and evaluation of em-
ploying depth priors to outdoor neural radiance fields, covering all
common depth sensing technologies and most application ways.
As a result, we conclude the experimental results and have inter-
esting findings as follows: (1) Density: Even a very sparse depth
supervision can significantly boost the view synthesis quality, and
generally, the denser, the better; (2)Quality: (a) Monocular depth is
enough for the sparse view, which can even achieve comparable re-
sults with the ground truth depth supervision. (b) depth supervision
is an option for dense view, i.e., the depth supervision is necessary
if the corresponding application needs the employed NeRF to have
a better geometry; (3) Supervision: Complex depth filtering and
loss function is unnecessary in outdoor NeRF and directly cropping
the sky area with MSE supervision is enough. We believe these
findings can potentially benefit practitioners and researchers in
training their NeRF models with depth priors.
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