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Abstract Denoising diffusion models have demonstrated
tremendous success in modeling data distributions and syn-
thesizing high-quality samples. In the 2D image domain, they
have become the state-of-the-art and are capable of gener-
ating photo-realistic images with high controllability. More
recently, researchers have begun to explore how to utilize
diffusion models to generate 3D data, as doing so has more po-
tential in real-world applications. This requires careful design
choices in two key ways: identifying a suitable 3D represen-
tation and determining how to apply the diffusion process.
In this survey, we provide the first comprehensive review of
diffusion models for manipulating 3D content, including 3D
generation, reconstruction, and 3D-aware image synthesis.
We classify existing methods into three major categories: 2D
space diffusion with pretrained models, 2D space diffusion
without pretrained models, and 3D space diffusion. We also
summarize popular datasets used for 3D generation with diffu-
sion models. Along with this survey, we maintain a repository
https://github.com/cwchenwang/awesome-3d-diffusion to
track the latest relevant papers and codebases. Finally, we
pose current challenges for diffusion models for 3D genera-
tion, and suggest future research directions.
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1 Introduction
Human beings live in a 3D physical world. 3D data provide
both the geometry and texture details of real-world objects
and scenes, and contain much richer information than 2D
images. The role of 3D digital assets is pivotal across a
wide range of applications, from entertainment and gaming
to the domains of virtual reality, robotics, architecture, and
manufacturing. Although the development of 3D modeling
technologies has made collecting and transmitting 3D assets
much easier, their creation ab initio remains time-consuming
and expensive. It also poses a great challenge for amateurs,
since this process mandates extensive manual effort and prior
experience. Consequently, techniques to generate 3D models
with straightforward commands will undoubtedly benefit
many people.

Generative models have greatly improved with deep learn-
ing and novel types of model, including variational auto-
encoders [1], generative adversarial networks [2], and nor-
malizing flows [3]. Recently, denoising diffusion probabilistic
models [4, 5] have recently become state-of-the-art genera-
tive models and have been widely applied to generate data
of different forms, such as images, video, text, and voice.
Notably, text-to-image diffusion models, including Stable
Diffusion [5] and Imagen [6], can generate high-quality 2D
images indistinguishable from real ones given prompts in
natural language. However, 2D generation is still insufficient
for real-world applications and researchers have made exten-
sive efforts to develop 3D generative models with diffusion
models.

Generating 3D data is inherently more challenging than
generating 2D data. While 2D images are matrices of pix-
els that can be conveniently processed by modern neural
networks, 3D representations have various forms, including
explicit and implicit representations such as meshes, voxel
grids, point clouds, and implicit functions [7]. Each rep-
resentation has its own strengths and weaknesses, with no
single representation being optimal. For example, implicit
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Fig. 1 A timeline of diffusion methods for 3D generation.

representations are easy to optimize but unsuitable for mod-
ern graphics pipelines. Critically, acquiring comprehensive
real-world 3D datasets, essential for 3D prior learning, is far
more difficult than capturing realistic images, posing a major
challenge.

Given the popularity of 3D generation via diffusion models,
this survey aims to provide a systematic review of recent
progress in this field. The use of diffusion models by existing
works can be classified from two aspects: what data the
diffusion process (2D or 3D) operates on, and whether a
pretrained diffusion model is used. This results in three
categories of recent works: 2D space diffusion with pretrained
models, 2D space diffusion without pretrained models and
3D space diffusion. It is important to note that they also have
different requirements for input data. In methods performing
2D diffusion with pretrained diffusion models, a 3D model is
learned by ensuring that its renderings lie in the distribution
modeled by the pretrained model. They treat the diffusion
model as a plug-in and do not perform any training of it, so no
additional data is needed. Other approaches learn diffusion
processes on 2D posed images and make them 3D-aware
in different ways, so the synthesized novel views are still
view-consistent. For diffusion using 3D representations, 3D
raw data is needed and the most common approach is to
directly convert the data into an intermediate representation,
e.g., triplanes, on which the diffusion process is performed.
As the choice of 3D representation is essential to diffusion
learning of 3D spaces, we review this line of work according
to the representation. A timeline of representative works for

each category can be found in Fig. 1.
The contributions of this survey are:
• the first comprehensive review of diffusion models for

3D generation, covering up-to-date research,
• a classification of related methods according to the

data the diffusion process operates on and whether a
pretrained diffusion model is used, and

• suggestions for future research directions for 3D content
generation by diffusion models.

Section 2 considers related surveys and clarifies the scope of
our survey. Section 3 introduces the basic concepts of diffu-
sion models and 3D representations. We summarize existing
methods for 3D generation with 2D diffusion or 3D diffusion
in Sections 4–6. Popular datasets used for 3D generation are
summarized in Section 7. Section 8 presents existing chal-
lenges and provides suggestions for future research. Finally,
Section 9 contains the conclusions drawn from our study.

2 Related Surveys
Recent surveys have provided comprehensive overviews of
general diffusion models as well as 3D generation and recon-
struction. In the former category, Yang et al. [8] summarize
the theory of diffusion models and briefly introduce their ap-
plications to different fields. Zhang et al. [9] review methods
that use text guided diffusion models for image generation
and editing. Although Li et al. [10] provides a survey of 3D
generation with diffusion, it only includes methods that opti-
mize a scene-specific 3D representation. Turning to surveys
related to 3D generation, Shi et al. [11] focuses on approaches
that use generative models to directly model unconditional
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distributions and conditional distributions (conditioned on
e.g., image, 3D or text inputs) of 3D data. Our survey includes
methods that use diffusion models to manipulate 3D content
that comes in both implicit and explicit representations. These
mainly include methods that use diffusion models to assist the
generation or editing of 3D data in a per-scene optimization
manner, methods that infer 3D novel views with diffusion
guidance, and methods that use diffusion models to learn the
3D data distribution from existing datasets.

3 Preliminaries
3.1 Diffusion Models

Probabilistic diffusion models are a class of generative models
that convert simple known distributions (e.g., a Gaussian) into
complex data distributions. They gradually perturb the input
in the forward diffusion process with Gaussian noise and learn
to estimate the perturbations through variational inference
during the reverse process [4, 12]. Both the forward process
and reverse process are parametrized using Markov Chains. In
notation, given x0 ∼ q(x0), the forward process q is a fixed
Markov chain that adds Gaussian noise to x0 and generates
latent variables x1, . . . ,xT with the same dimension with a
predetermined variance schedule β1, . . . , βT :

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (1)

Ideally, the final latent variable xT should be from a
standard Gaussian distribution. Therefore, the reverse process
starts denoising from p(xT ) = N (xT ;0, I) by learning the
Gaussian transitions from xt to xt−1:

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), (2)

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (3)

The training procedure aims to maximize the negative data
log-likelihood. In DDPM [4], Σθ(xt, t) is set to time-
dependent constants and only the mean µ in the reverse
process is trainable. In practice, we use a trainable network
(U-Net) to approximate the noise ϵ added in the forward
process through parametrization:

Et,x0,ϵ

[∥∥ϵ− ϵϕ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2] (4)

Please refer Ho et al. [4] for a complete explanation.
Diffusion probabilistic models are also called score-based

generative models, so can be viewed from a stochastic differ-
ential equation (SDE) perspective [13]. The forward process
is expressed as:

dxt = −1

2
β(t)xtdt+

√
β(t)dωt (5)

where ωt is a standard Wiener process, and dt is an in-
finitesimal negative timestep. The reverse process is also an

SDE:

dxt = [−1

2
β(t)xt − β(t)∇xt log qt(xt)]dt+

√
β(t)dω̄t

(6)
where ω̄t is a standard Wiener process in which time flows
backward from T to 0. ∇x log pt(x) is known as the score
function. We can estimate the score for all t using a neural
network, allowing the reverse process to be determined.
See [13] for more details.

Unless otherwise noted, in this paper, we use xt to denote
the sample with noise for diffusion models at timestep t, ϵ for
the added noise and ϵϕ for the noise predictor. Thus, xt can
be a rendered image, latent variable, or 3D shape, depending
on the actual method.

3.2 3D Data Representations

The main traditional 3D data representations include point
clouds, meshes and voxel grids. Point clouds are a collection
of 3D point coordinates and their attributes (colors). Meshes
represent 3D shapes by storing vertex positions and edge
connections. Voxel grids can be seen as an extension of image
pixels, with each point regularly distributed in 3D space. To
save memory, sparsification techniques such as voxel hashing
are used to prune empty voxels.

With the advance of deep learning, neural fields [14] have
gained in popularity as a way of representing scene geometry
and appearance. Fields refer to spatial-varying quantities and
a neural field parameterizes a field in part or fully with a
neural network. Chen et al. [15] proposed a unified framework
to represent existing neural fields:

s(x) = P

(
N∏
i=1

fi(γi(x))

)
, (7)

where γi : RD → RFi is a coordinate transformation, fi :
RFi → RK are the factor fields (features for a coordinate),
and P : RK → RQ is a projection function.

∏
denotes the

element-wise product of a sequence of factors. To derive the
final observations, the projection functionP may also perform
post-processing steps. For example, in NeRF [7], the output
signal provides per-point color and density (D = 5, Q = 4),
which requires the volumetric rendering step to produce
an image at given viewpoints. Commonly used neural field
components in Eq. (7) are shown in Fig. 2. For 3D tasks,
widely utilized neural fields and their formulations are listed
in Table 1.

3D Gaussians [19] have appeared as a popular type of
3D representation since they can provide high-quality, high-
speed rendering. 3D Gaussians represent 3D scenes as a set of
Gaussians that contain attributes of position, color, scale and



4 C. Wang, H.-Y. Peng, Y.-T. Liu, et al.

1D Vectors 2D Maps 3D GridsMLPs

Field Representation

Orthogonal-2DHashingSinusoidal

Coordinate Transformation

Projection

Points

3D Data

Fig. 2 Common neural field components, following [15].

Table 1 Common Neural Field 3D Representations
Name N γi(x) fi(x) P(x)

NeRF [7] 1 Sinusoidal(x) x MLP(x)
iNGP [16] 1 Hashing(x) Vectors(x) MLP(x)
Triplane [17] 1 Orthogonal-2D(x) 2D-Maps(x) MLP(x)
Plenoxels [18] 1 x 3D-Grids(x) x or SH(x)

opacity, which can be rasterized into images and optimized
with rendering loss.

4 Diffusion in 2D Space with Pre-trained Mod-
els

Pretrained text-to-image diffusion models are powerful
enough to generate photorealistic 2D images from text input.
Researchers have leveraged this capability for various 3D
generation tasks with score distillation techniques. We show
results from representative works in Fig. 4 later.

4.1 Preliminary: Score Distillation Sampling

Dreamfusion [20] learns a 3D scene from 2D pre-trained
text-to-image diffusion models. Given a datapoint x = g(θ)

generated by a differentiable generator g with parameters θ,
Dreamfusion [20] adds Gaussian noise of level t and turns
it into xt. It then uses a pre-trained diffusion model with
denoising function ϵϕ(xt; y, t) to predict the noise with text
embedding y to update θ. The proposed score distillation

sampling (SDS) is written as:

∇θLSDS(ϕ, g(θ)) = Et,ϵ

[
w(t)(ϵ̂ϕ(xt; y, t)− ϵ)

∂x

∂θ

]
(8)

ϵ̂ϕ(xt; y, t) = (1 + wg)ϵϕ(xt, y, t)− wgϵϕ(xt, t) (9)

where w(t) is a weighting function, wg is the guidance scale
between unconditional and conditional generation. For 3D
tasks, θ is the neural field, mostly represented by a multi-layer
perceptron, x is a rendered image (or latent image) given
a random camera viewpoint, and g represents the volume
rendering process. SDS loss can also be written as:

LSDS = Et,ϵ

[
||x− x̂0||2

]
(10)

where x and x0 are the rendered image and denoised image
respectively. Therefore, optimizing SDS encourages the ren-
derings of the neural field to be similar to the generated 2D
images of diffusion models given a text condition t. SJC [21]
arrives at the same training objective from the perspective
of estimating the scores of 3D data with 2D scores. As the
pseudo-ground-truth of SDS is stochastic, LucidDreamer [22]
uses interval score matching that applies DDIM inversion
and DDIM sampling to the 3D renderings, for more accurate
supervision.

VSD [23] further models the 3D representations to be
learned as a distribution and aligns its samples with the
pretrained diffusion model by solving a variational inference
problem. The final loss function used by VSD is:

∇θLVSD(ϕ, g(θ)) = (11)

Et,ϵ,c

[
w(t)(ϵ̂ϕ(xt; y, t)− ϵτ (xt; y, t, c))

∂x

∂θ

]
where ϵτ estimates the score of noisy rendered images, trained
with a standard diffusion objective, and c denotes the camera
parameters used for rendering. Note that both SDS and VSD
are typically applied to 2D images since 2D pretrained diffu-
sion models are well-established and accurate in estimating
2D scores. However, they are general distillation methods
and can be directly applied to 3D representations given 3D
pretrained models, in which case x would be some 3D data.

4.2 Text-to-3D Generation
4.2.1 Object Level
Dreamfusion [20] and SJC [21] were first to achieve text-
guided 3D generation by using SDS to optimize MipN-
eRF [24] and a voxel grid respectively. Most following works
employ a similar framework to that shown in Figure 3, which
updates a 3D representation using pretrained diffusion mod-
els and improves the generation quality in various ways,
including the choice of 3D representation, the sampling of
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Fig. 3 (Above) Distilling 3D models from 2D pretrained diffusion models. In each iteration, random Gaussian noise is added to the image
rendering of the 3D scene and a conditional pretrained diffusion model denoises the noisy image. The difference between the added noise and
estimated noise is used to calculate the SDS loss for gradient backpropagation. (Below) Recent works have fine-tuned pretrained diffusion
models to generate multi-view images which can then be directly reconstructed into 3D representations.

diffusion models and the choice of diffusion model. Dream-
Gaussian [25] speeds up SDS optimization into minutes by
using 3D Gaussians.

Magic3D [26] generates high resolution 3D content in
a coarse-to-fine manner with a latent diffusion model. It
first optimizes an Instant-NGP [16] model with SDS in low-
resolution image space. Then it extracts a textured mesh from
it and further fine-tunes the mesh with a high-resolution latent
diffusion model using SDS again.

TextMesh [27] aims to generate high-quality 3D content
in mesh representation. It directly optimizes an SDF neural
field with SDS to allow easy extraction of meshes. Further, it
uses another diffusion model conditioned on the renderings
from the mesh to re-texture the mesh with another SDS
optimization stage.

Latent-NeRF [28] also performs SDS in the latent space.
Then it fine-tunes a shallow MLP encoder with SDS to turn
latent information into an image. Latent-NeRF also allows
guiding the generation process with coarse shape initialization
or colorizing a given mesh by optimizing its u-v map with
SDS.

Fantasia-3D [29] generates disentangled geometry and ap-
pearance of 3D objects. It first represents the geometry with

DMTet and optimizes its parameters with SDS by using the
rendered normal map as the input to the pre-trained diffusion
model. Then, it optimizes the appearance of the object by
predicting the material parameters of the bidirectional re-
flectance distribution function (BRDF) using another round
of image-based SDS.

DITTO-NeRF [30] firstly generates a point cloud for the
input image by depth estimation methods. It divides viewing
angles into inside-boundary (IB) and outside-boundary (OB)
according to whether the point cloud can be projected to
the view. It enforces image rendering loss in the IB regions
and uses SDS based on a pre-trained inpainting diffusion
model to generate the OB regions. Finally, a refinement step
is performed to ensure consistency of IB and OB regions.

3DFuse [31] makes the SDS process 3D-aware by injecting
depth information into the pre-trained diffusion model. Given
a text prompt, it first generates a 2D image and optimizes
the text embedding e. Then the depth map of the image,
predicted by an off-the-shelf estimator, is injected into the
diffusion U-Net through feature addition. It also fine-tunes
the diffusion model with additional LoRA layers to adapt it
to the embedding e and maintain semantic consistency.

As SDS approaches based on latent diffusion models oper-
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ate at a limited 64× 64 resolution, Liao et al. [32] present a
generic approach to achieve more detailed guidance: besides
the SDS loss, it aligns the features of the input latent informa-
tion and the predicted latent information by inputting them
into the UNet decoder of Stable Diffusion [5] and computing
the difference between the multi-level features. It also uses
KL loss to keep the optimized latent information close to the
prior distribution during training.

Perp-Neg [33] aims to overcome the multi-face Janus
problem of text-to-3D generation: the Janus problem refers
to the phenomenon that the generated 3D content may show
the canonical view from multiple viewpoints, i.e., resulting in
more than one face. Perp-Neg resolves this problem by making
the 2D diffusion model generate images more conforming
to the view angles. It generates each view with different
positive and negative prompts by making Equation (9) view-
dependent:

ϵ̂ϕ(xt; y, v, t) = ϵϕ(xt, t) + wg[ϵ
posv
ϕ −

∑
i

wi
vϵ

neg(i)⊥
v

ϕ ]

(12)
ϵ
posv
ϕ = ϵϕ(xt, t, ypos,v)− ϵϕ(xt, t) (13)

ϵ
neg(i)

v

ϕ = ϵϕ(xt, t, yneg(i)
v ,v

)− ϵϕ(xt, t) (14)

where yv refers to the positive/negative text embedding for
view direction v, ϵneg

(i)⊥
v

ϕ is the perpendicular component

of ϵneg
(i)
v

ϕ on ϵ
posv
ϕ . The perpendicular gradient prevents the

negative prompt from influencing the semantics of the positive
prompt and makes the generation better conditioned on the
prompts.

HiFA [34] rewrites Equation (8) to:

∇θLSDS(ϕ, g(θ)) = w(t)

√
ᾱt

2
√
1− ᾱt

(x− x̂1step)
∂z

∂θ
(15)

x̂1step =
1√
ᾱt

(xt −
√
1− ᾱtϵϕ(xt; y, t)) (16)

where x is the latent image. Standard SDS directly compares
the rendered latent image to the latent image predicted by
the diffusion model with one-step inference. HiFA replaces
x̂1step by more accurate step-by-step estimation. Furthermore,
it supervises the rendered depth using a pre-trained depth
estimation model and regularizes the distribution of NeRF
weights for each ray to generate a crisp surface. HifA and
DreamTime [35] also study the choice of t during optimiza-
tion, opting for a large t during the initial training iterations
and gradually reducing it to capture fine details.

Building upon previous works, ATT3D [36] was the first
to achieve 3D generation with pre-trained diffusion without
per-scene optimization. It trains a mapping network to map
prompts to NeRFs, allowing the training of a set of prompts

collectively. Latte3D [37] further scales up ATT3D and
achieves much better quality.

4.2.2 Scene Level

To generate 3D scenes with pre-trained diffusion models,
one line of work generates a proportion of the scene, then
iteratively extends it by inpainting using novel viewpoints
with the help of depth information. The popular underlying
3D representations include meshes and neural fields.

SceneScape [38] generates zoom-out trajectories for a 3D
scene from text prompts. It represents the scene using a unified
mesh and outpaints the mesh iteratively. At each step, a new
frame with depth is projected from the mesh and completed
using a pre-trained text-to-image diffusion model. It leverages
a pre-trained model to predict the depth of the generated
image and further fine-tunes the depth model for consistent
geometry by encouraging the predictions to be consistent in
the projected regions. Finally, the mesh is updated using the
predicted depth map.

Text2Room [39] generates a mesh-based 360◦ 3D scene
based on pre-trained text-to-image diffusion models. It has a
similar spirit to SceneScape [38], because it also maintains a
global mesh and samples at predefined poses to generate the
whole scene by completing RGBD renderings step-by-step.
The difference is that Text2Room performs depth alignment
and mesh filtering to obtain an optimal next mesh patch
for each pose. It also samples additional poses to fill in the
remaining unobserved regions.

Given a text prompt, Text2NeRF [40] synthesizes an initial
view and estimates its depth with a pre-trained diffusion
model and depth estimation model. Then it warps the initial
view to other viewpoints to initialize a NeRF scene. Then it
renders from novel viewpoints and adopts diffusion models to
complete the missing regions. Using a depth alignment step,
the newly completed image is added to NeRF training.

For panoramas, PanoGen [41] generates 360◦ indoor scenes
with recursive outpainting over a single image generated from
the text caption. MVDiffusion [42] fine-tunes Stable Diffusion
by adding attention layers to generate consistent images across
views and stitch them to panoramas.

Another line of work creates 3D scenes in a composi-
tional manner, i.e., generating each object separately and then
blending them into a scene. Given user-specified 3D bounding
boxes each denoting the location and size of an object, Po and
Wetzstein [43] render both images and segmentation maps.
The optimization is still using SDS loss, but the denoising
steps of each semantic region in an image are based on the text
prompt of the corresponding object. Set-the-Scene [44] and
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CompoNeRF [45] also generates 3D scenes from 3D bound-
ing boxes, but they have both object-level and scene-level
neural fields. During the optimization, they either optimize
each object individually or optimize the whole scene with
SDS.

4.3 Image-to-3D Generation

Pre-trained diffusion models contain 3D knowledge inherently
since they can generate images from various viewpoints.
By exploiting the 3D priors in them, existing works can
reconstruct an object from only one view or a few views.

Neural-Lift360 [46] and NeRDi [47] lift a single in-the-wild
image to 360◦ views with diffusion guidance. They use a pre-
trained Stable Diffusion [5] to denoise the NeRF renderings
to ensure the generation is aligned with the input image. They
also incorporate relative depth ranking information from pre-
trained monocular depth estimation to regularize the geometry
of radiance fields. Similarly, RealFusion [48] achieves 360◦

mesh reconstruction from a single image using a pre-trained
diffusion model. It adapts the diffusion prior to the input image
by using textual inversion [49] on the augmented images of the
input. Given the customized diffusion model, a coarse-to-fine
NeRF is optimized with SDS and smooth normal objectives.

To make the synthesized novel views more faithful to the
given view, Make-it-3D [50] proposes a two-stage optimiza-
tion pipeline. The first stage extends NeRDi [47] with an
additional CLIP loss to force the rendered image to look more
like the input. The second stage builds a point cloud and
textures visible points using reference images, and invisible
points from the first stage NeRF, with a learnable deferred
renderer.

DreamSparse [51] achieves view synthesis from sparse
views with a pre-trained diffusion model. It extracts geometry
features from input views with a 3D geometry module and
learns a spatial guidance model to condition the pre-trained
diffusion model with the extracted features. In this way, the
synthesized images from the pre-trained models are view-
consistent with the input object. Dreambooth3D [52] lifts a
set of casually captured images of an object to 3D without
camera poses. Since DreamBooth tends to overfit input views,
naively combining it with SDS leads to inconsistent 3D
models. Therefore, DreamBooth3D first partially fine-tunes
a DreamBooth and uses SDS to optimize a 3D-consistent but
not subject-specific NeRF. Then the renderings of the NeRF
are translated to detailed multi-view subject images using a
fully-trained DreamBooth model. Those images are used to
further fine-tune the partial DreamBooth into a multi-view
DreamBooth for final SDS optimization.

Instead of using frozen models, Zero123 [53] constructs a
synthetic dataset containing paired images and their relative
camera parameters to fine-tune a pre-trained Stable Diffusion.
The training objective is to synthesize one image using the
other image and relative poses as the denoising condition.
Once trained, the model can generate new images of the same
object under a given camera transformation. Once trained,
Zero123 can be used as a pre-trained model for image-to-
3d generation with SDS. Magic123 [54] utilizes Zero123
(precise geometry but oversimplified texture) as the 3D prior
and Stable Diffusion (detailed texture but imprecise geometry)
as the 2D prior for 3D reconstruction from a single image.
Zero123 can also generate multi-view images of an object to
assist the training of a generalized single image reconstruction
model [55].

Since Zero123 [53] generates images in different poses
separately, results for the same object are inconsistent in
3D. Following work [56–61] fine tunes Stable Diffusion to
synthesize multi-view images at the same time and model
their connections with attention mechanisms. The synthesized
multi-view images can be fused into 3D representations such
as 3D Gaussians and meshes using reconstruction models [62–
64]. In a recent development, GECO [65] distills the multi-
view diffusion model into one-step using VSD [23] and trains
a feedforward 3D generative model that can naturally handles
the back-view of the input image. CAT3D [66] generates a
large set of synthetic views from a multi-view latent diffusion
model conditioned on the input views, and directly trains a
NeRF on those views. Benefiting from large-scale training,
the model also works well on images with backgrounds.

4.4 3D Human and Animal Generation

For human and animal generation, shape priors such as
parametric human models can be incorporated into the opti-
mization process to ensure reasonable geometry.

DreamFace [67] generates personalized 3D faces using text
guidance. It first selects a coarse geometry from the shape
space of a parametric model called ICT-FaceKit [68]. To
achieve detailed geometry, it renders the coarse mesh with
vertex displacements and normal maps which are learned with
SDS. In the texture generation step, it again uses SDS on both
the latent space and image space similar to Latent-NeRF [28].

To generate human avatars from text prompts, parametric
models such as SMPL provide an ideal geometry initialization
for the 3D representation. AvatarCraft [69] optimizes a tem-
plate avatar initialized from the SMPL model using SDS, but
introduces a pixel-level silhouette loss to avoid SDS changing
the geometry greatly. DreamAvatar [70] utilizes two SDSs
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to optimize a canonical template avatar and an observation
avatar jointly; the former is obtained by deforming the latter.
The canonical pose minimizes self-occlusion and is easy to
generate. For 3D consistent SDS, DreamWaltz [71] extracts a
body skeleton from SMPL to replace the pretrained diffusion
model with a skeleton-conditioned ControlNet. TADA [72]
further improves the text-to-human optimization pipeline by
optimizing geometry and texture simultaneously and intro-
duces animations throughout the optimization process to make
the generated avatar semantically consistent with SMPL-X
so that it can be easily animated. As an alternative to SMPL,
implicit statistic models like imGRUM [73] are more compat-
ible with NeRF and are also utilized with SDS for 3D human
body generation and animation.

In addition to generating avatars from text prompts, other
works create them from input images. Given a single human
image, ZeroAvatar [74] first estimates a SMPL mesh and u-v
map. The recovered mesh is used in two ways: to initialize the
density field of NeRF and to render the depth at novel views.
The final loss terms include depth-guided SDS, RGB loss from
the u-v map, and depth correlation loss. AvatarBooth [75]
creates personalized avatars from casually captured face or
body images. It optimizes NeuS with SDS with fine-tuned
Stable Diffusion models on the input images.

Pretrained diffusion models can also assist in the single-
view reconstruction of articulated objects. Farm3D [76] learns
an articulated category-level model using only virtual data
generated by Stable Diffusion. It encodes an input image into
an articulated shape, appearance, viewpoint, and light direc-
tion with a single-forward pass. The encoder is learned using
both SDS loss on sampled virtual views and reconstruction
loss on the input view. ARTIC3D [77] aims to achieve the
same goal with sparse web images of an animal species in-
stead. However, it calculates pixel-level gradients with Stable
Diffusion. Specifically, the latent image of a rendered image
I is updated using multiple steps with score distillation and
then decoded to I ′. Pixel-level L2 loss between I and I ′ is
utilized to update the reconstruction module.

4.5 3D Editing

Instruct-NeRF2NeRF [78] and Instruct-3D-to-3D [79] edit
a trained NeRF scene with an image-conditioned Instruct-
Pix2Pix [80] diffusion model. The former edits the NeRF
renderings with InstructPix2Pix given a text instruction and
then uses them as supervision signals to optimize the NeRF
(known as dataset update). By repeating the procedure, the
original NeRF scene is gradually aligned with the prompt. The
latter contains a frozen NeRF model and a target model. Both

models render the same viewpoint and the rendering from
the frozen model is edited with InstructPix2Pix. Finally, the
edited image and the rendering from the target model are used
to update the target NeRF with SDS. Edit-DiffNeRF [81] also
edits NeRFs with Instruct-Pix2Pix, but fine-tunes the diffu-
sion model in the target scene for more accurate changes and
better semantic consistency. Control4D [82] applies dataset
update for dynamic scene editing and trains a discriminator
to mitigate the issue of inconsistent supervision arising from
the edited dataset.

Other works use the Stable Diffusion model for editing
tasks. RePaint-NeRF [83] first trains a CLIP feature field in
NeRF to select the target object and then uses a text prompt
to edit the selected region with SDS. DreamEditor [84]
automatically locates the regions to be edited by using the
fact that the attention maps in the pre-trained diffusion model
reflect the relationship between each keyword and a pixel in
the generated image. SDS is only performed in the editing
region for precise editing. FocalDreamer [85] allows adding
independent and reusable 3D parts to existing 3D models.
It optimizes the added parts in selected regions with SDS
by feeding the renderings of the whole object to pre-trained
diffusion models. Style and geometric consistency losses are
applied to ensure localized change and congruent overall
appearance.

5 Diffusion in 2D Space for View Synthesis
5.1 View Synthesis of 3D Objects

To synthesize novel views of 3D objects, current works learn
to make the diffusion process 3D-aware by exploiting the
cross-view relationships in multi-view data, or using the
inductive bias of 3D representations, such as NeRF.

3DiM [87] learns to denoise a Gaussian-noised target view
by conditioning the 2D diffusion model with an input view
and relative camera pose. It also uses stochastic conditioning
at inference time for better 3D consistency. Similarly, Chan
et al. [88] also conditions a 2D diffusion model on the input
image and the relative camera pose. However, it incorporates
geometry priors by concatenating the input with a pixel-
aligned feature image that is created by warping input image
features to the target view for 3D consistency.

NeRFDiff [89] jointly trains a triplane-based Pixel-
NeRF [90] with 3D-aware conditional diffusion to model
the uncertainly of single-image view synthesis. The diffusion
process learns to denoise at the target viewpoint given Pixel-
NeRF rendering as the condition. It also uses NeRF-guided
distillation to alternately update the NeRF representation and
guide the multi-view diffusion process.
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Fig. 4 A gallery of 3D generation results from different categories, obtained with threestudio [86]. Please refer to the Github Repo for
up-to-date results.
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3DDesigner [91] also consists of a NeRF module and
diffusion module. It concatenates the noised image with a
coarse rendering from NeRF as the conditional information.
It jointly denoises two images from different viewpoints to
enhance multi-view consistency and computes cross-view
feature interactions in attention blocks.

SparseFusion [92] first learns a diffusion model on the
features extracted from an epipolar transformer to model
the distribution of p(x|π, C), where x is the 2D image,
π is the target pose, and C denotes the input views and
poses. To sample from this distribution, it distills a NeRF
by encouraging the NeRF rendering gθ(π) to be close to
denoised images x̂T :

Ldistillation = Eπ,ϵ,t[wt∥gθ(π)− x̂T ∥]

RenderDiffusion [93] makes the denoiser 3D-aware to
introduce inductive bias for 3D generation with only single-
view 2D data. It replaces the popular UNet [94] denoiser by
a latent 3D structure, consisting of a triplane encoder that
transforms a single noisy image into a triplane, and a triplane
volume renderer that renders it back to a denoised 2D image
for supervision. Similarly, Tewari et al. [95] also learn to
generate novel views by denoising one image, but train on
multi-view datasets and condition the denoising process with
renderings using PixelNeRF. ViewsetDiffusion [96] further
jointly denoises multiple noisy images with multi-view ag-
gregation given any number of clean images for conditioning,
allowing for sampling of 3D reconstructions. The denoising
function targets reconstruction and rendering of a 3D volume.
DMV3D [97] further scales up RenderDiffusion [93] to highly
diverse datasets with the LRM [98] 3D denoiser architecture.

Xiang et al. [99] directly train a 2D diffusion model on
ImageNet [100]. They model the distribution of 3D scenes
p(x3d) as the joint distribution of their multiview renderings:

p(x3d) = p(xπ0 ,xπ1 , . . . ,xπN
)

= p(xπ0
) · p(xπ1

|xπ0
) · · · · · p(xπN

|xπ0
, . . . ,xπN−1

)

Then, they learn an unconditional diffusion model to generate
the first view and a conditional diffusion model with previous
views as the condition to synthesize novel views. To train
without multi-view data, they replace the condition image by
the forward-backward depth-warped target view.

5.2 View Synthesis of 3D Scenes

Tseng et al. [101] train an image diffusion model to synthesize
a long-term video of novel views from a single image. The
model takes the source view image and camera poses as the
condition and denoises the image from the target viewpoint.
It adds an epipolar attention layer after each self-attention

layer in the UNet denoiser. Therefore, the denoising process is
augmented by the epipolar features linking source and target
views. They also use stochastic conditioning and fixed noise
in the backward process to reduce flicker.

Also dealing with view synthesis from a single image,
Yu et al. [102] propose a two-stream architecture using two
U-Nets with shared weights to process the novel view and
the conditioning view. The two networks interact with each
other through cross-attention layers, which are inserted after
every spatial attention layer. They also incorporate camera
pose information into the queries and keys of the attention
layers.

DiffDreamer [103] uses diffusion models for view synthe-
sis of a long camera trajectory with only internet-collected
images of nature scenes. It creates training pairs by projecting
the ground truth RGBD image (Igt, Dgt) to a previous camera
pose and then projecting back to get (Icorrupt, Dcorrupt. The
diffusion model learns to inpaint and refine the corrupted
image (Icorrupt, Dcorrupt) with ground truth (Igt, Dgt). Dur-
ing inferencing, the sampling is conditioned on the anchored
frame and future frame to preserve temporal consistency.

6 Diffusion in 3D Space
Diffusion in 2D images requires no data or only images. With
available 3D datasets, another popular line of research directly
performs 3D generation with diffusion models using 3D data,
which has several different representations, e.g., point clouds,
meshes, and neural fields. For these methods, the forward
and reverse diffusion processes are applied to certain 3D
representations z. The whole network intends to directly learn
the prior distribution of 3D space and aims to generate 3D
shapes without further training during inferencing. The main
training objective for the denoising process is similar to that
in Section 3.1:

Et∼(0,T ),x0∼q(x0),ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t, c)∥2

]
(17)

where c is the condition. Prompt-guided generation, including
text-guided and image-guided, can be achieved by adding
conditions c to the diffusion training, i.e., the denoiser is
conditioned on c. One main approach utilizes the cross-
attention mechanism to add connections between conditions
and denoised 3D representations. Another applies adaptive
group normalization (AdaGN) to combine the embedded
condition with the denoising layers.

It is important to design a proper representation for dif-
fusion models to learn the prior distribution. Thus most 3D
generation methods using 3D diffusion contain two stages:
they first train a network to convert the input explicit 3D
data (e.g., mesh, point cloud) to a more usable form such as
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Fig. 5 A common two-stage pipeline for 3D generation with diffusion models. First, an encoder-decoder network (e.g., VAE) is applied to
learn an intermediate representation (e.g., triplane) of 3D data. Then diffusion models are utilized to learn the prior distributions of this
representation; xt̂ denotes an intermediate timestep. One can thus generate 3D data by sampling from this learned distribution.

tri-planes or latent shape. This step usually includes train-
ing an autoencoder or a VAE architecture supervised by 3D
reconstruction loss or neural rendering loss. Then diffusion
models are utilized to learn the distribution of the intermediate
representation. This procedure is visualized in Fig. 5. We
categorize 3D generation methods based on which represen-
tation the diffusion process adopts. Representative results are
presented later in Fig. 6.

6.1 3D Diffusion using Tri-planes

The tri-plane representation is a hybrid explicit–implicit
representation, which is widely used for 3D tasks. Thus, we
first review diffusion models on triplanes. A triplane consists
of three axis-aligned feature maps with the same resolution
N × N × C, where N is the spatial resolution and C is
the number of channels. EG3D [17] introduce the tri-plane
representation to generate 3D human faces in an efficient
and expressive manner. To obtain the features of any 3D
point, we can project it onto the three axis-aligned planes
to get corresponding 2D features (Fxy, Fyz, Fxz) and then
aggregate them via summation or multiplication. Since the
features contain rich information, they can then be processed
and used in volume rendering or shape reconstruction using
shallow networks, with high efficiency.

Since the N × N × C tri-planes can be viewed as C

channel 2D images, NFD [104] suggests that we can directly

utilize existing 2D diffusion backbones to generate normal-
ized tri-planes. NFD first learns a dataset of tri-planes and a
shared decoder that decodes tri-plane images into occupancy
representation on a class of objects. It then trains the reverse
process of the diffusion model on the generated tri-plane
dataset with DDPM. During inferencing, the tri-plane distri-
bution is sampled and decoded to a 3D shape by the shared
decoder.

Rodin [105] also uses diffusion on tri-plane features for
volume rendering of human faces. It uses a latent representa-
tion extracted from image, text, or random noise to condition
the base diffusion model at a resolution of 64× 64. Then it
further trains a diffusion upsampler to lift the low-resolution
tri-planes to 256 × 256, which helps to generate 3D struc-
tures with high fidelity. The low-resolution tri-planes serve
as the condition for the diffusion process using 256 × 256

tri-planes. Instead of directly using a 2D convolution as in
NFD [104], a 3D-aware convolution of the three planes is
used to reinforce the cross-plane connections. Eq. 18 shows
how this convolution works in practice, where (.) indicates
mean pooling on an axis.

F
′

xz = Conv2d(concat(Fxz, F(.)z, Fx(.))) (18)

3DGen [106] adopts a VAE structure with tri-plane features
as the intermediate representation. However, 3DGen decodes
the tri-plane into an SDF, and then applies DmTet [107] and
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NvDiffRast [108] to render the RGB and depth map from
the reconstructed mesh for rendering-based supervision. The
whole pipeline of 3DGen is pretrained on the Objaverse
dataset [109], which substantially improves the quality of the
generation results.

SSDNeRF [110] unifies the auto-encoding and diffusion
stages of previous methods [106] into a single-stage diffusion
model, thereby reducing the noise and artifacts introduced by
intermediate latent codes in two-stage training. The training
target of SSDNeRF is to minimize the variational upper bound
on the negative data log-likelihood. The loss function consists
of two items: a rendering loss to learn the tri-plane decoder
and a diffusion denoising loss to learn the diffusion priors
for tri-planes, as shown in Eq. 19. x denotes the tri-planes,
π is the rendering camera pose, and y as the ground truth
image. SSDNeRF supports both unconditional generation and
image-based reconstruction with learned diffusion priors. For
reconstruction during inferencing, SSDNeRF fine tunes the
tri-plane with the training loss terms, but with a lower weight
for the diffusion loss.

L = E[
∑
j

1

2
||y(π)− render(x, π)||2]︸ ︷︷ ︸

rendering loss

+

Et,ϵ[
1

2
w(t)||denoiser(xt; t)− x||2]︸ ︷︷ ︸

diffusion loss

(19)

Control3Diff [111] combines the strengths of diffusion
models and GANs for versatile controllable 3D-aware image
synthesis using single-view datasets for a class (e.g., FFHQ,
AFHQ). It trains EG3D [17] to synthesize an infinite number
of pairs of the control signal and tri-planes. Then it adopts
a diffusion model with optional image guidance to jointly
learn the prior distributions of tri-planes and camera poses of
input images. During the inference stage, it allows additional
rendering guidance for camera calibration and prediction.

6.2 3D Diffusion on Latent Space

Instead of tri-planes, some work encodes 3D objects or scenes
into latent spaces that represent geometry or texture. The
latent representations take various forms, e.g., 1D vectors
or 3D grids, which are compressed and more suitable for
transformer-based backbones. The diffusion models are thus
trained in the latent space.

DiffusionSDF [112] applies a VAE-based architecture as
the backbone for generation. It first trains the VAE to encode
the input point clouds into the latent SDF space. It then
trains a DDPM model on the latent representation. To allow
conditional generation from partial clouds or images, it adds an

additional cross-attention layer in each block of the diffusion
model. During inferencing, it samples latent representations
from a Gaussian distribution and decodes them with the SDF
network. Diffusion-SDF [113] also adopts a VAE autoencoder
to learn latent SDF space, but it instead encodes patch-level
truncated signed distance functions (TSDF) into voxelized
latent codes and introduces a voxelized diffusion model. It
uses a UniU-Net architecture to replace the U-Net in DDPM;
the former contains 1 × 1 × 1 convolution layers to learn
independent patch-focused information. Spatial transformer
networks capture inter-patch relationships.

3D-LDM [114] adopts a VAE architecture to encode in-
put SDF objects into compact latent codes for the diffusion
process. It achieves multi-modal conditions through a cross-
attention mechanism and classifer-free guidance (CFG). SD-
Fusion [115] also employs conditioned diffusion networks
on the latent codes from SDF inputs, and further improves
the quality of the textures through SDS optimization [20] of
generated geometry.

LION [116] uses a hierarchical VAE with PVCNN [117]
backbones to encode both latent shape and latent points. It
trains diffusion models on both latent spaces. The regularized
latent points are more effective and expressive compared to
raw point clouds, while the global latent shape is used to
augment the model.

3DShape2VecSet [118] directly optimizes a set of latent
codes to represent 3D objects. It first maps point clouds to
positional embeddings and encodes them into a set of latent
codes through a cross-attention module. Then the latent space
is regularized with KL-divergence loss. 3Dshape2VecSet
generates final objects by querying the decoded latent features
fi with an attention mechanism, as given below:

Ô(x) = FC

∑m
i v(fi) exp

(
q(x)T k(fi)/

√
d
)

∑m
i exp

(
q(x)T k(fi)/

√
d
)

 (20)

EDM [119] is used as the denoising network on the shape
latent space.

Shap-E [120] adopts NeRF, and a signed distance and
texture field (STF) to represent 3D objects. It learns an
encoder to produce the parameters of NeRF and STF. The
encoder first produces a latent representation of input 3D
assets and then decodes it to MLP parameters. A diffusion
prior is learned on the latent space.

3D VADER learns the denoising process on normalized
3D latent voxel grids and adopts EDM [119] in the in-
ferencing step. It first trains the auto-decoder to decode a
robustly-normalized latent voxel grid from the input 1D object
embeddings. The final radiance volume representations are
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extracted from the latent grid through rendering supervision.
For scene generation, GAUDI [121] utilizes disentangled

latent codes to represent scenes and camera poses. It first
jointly optimizes latent codes and reconstruction networks
with neural volume rendering losses. In the second step,
GAUDI employs a DDPM model to learn the distribution of
the latent codes. NeuralField-LDM [122] generates real-world
3D scenes with a three-stage pipeline. It first learns to encode
scenes into a neural field with density and feature voxel grids.
Then, the voxel grids are further compressed to a set of 3D
coarse, 2D fine and 1D global latent representations. The
diffusion model is trained on the tri-latent representation for
3D scene generation.

The diffusion process can also be performed in the latent
style space of StyleGAN [123] as in StyleAvatar3D [124],
which applies ControlNet [125] to introduce view, attribute,
and style conditions for generating stylized images of humans.
EG3D [17] is trained on the data from which image and style
vector pairs can then be sampled. Finally, it applies the
denoising process in the latent space of StyleGAN to allow
3D avatar generation from single-view image conditions.

6.3 3D Diffusion using Implicit Representation

Since the emergence of neural fields, implicit representations
have become a popular form of encoding 3D assets. Existing
works have also explored 3D generation using diffusion
models on implicit representations, such as SDF, NeRF, or
even MLP weights.

Yang et al. [130] follows a common two-stage pipeline and
suggests that ReLU-fields are suitable for NeRF-based 3D
generation. They first train the voxelized ReLU-fields with
rendering and density losses. For the diffusion process, they
utilize 3D convolution to update the U-Net structure used in
DDPM [4], which suits the volume representation better.

Nikolai et al. [131] utilize a diffusion process to generate
tetrahedral meshes. They adopt the VAE architecture and use
a subdivision-based convolution and pooling operation for
upsampling and subsampling tetrahedral grids. The diffusion
process is carried out on the signed distance and displace-
ment stored at the tetrahedra vertices. Similarly, MeshDiffu-
sion [127] also represents meshes using tetrahedral grids fitted
from random RGBD views. It applies DMTet [107] to extract
meshes from normalized tetrahedral grids for differentiable
rendering supervision. The diffusion model treats normalized
signed distance values as floats and adds a refinement step
for the deformation vectors to improve quality.

Hui et al. [132] use neural wavelets to represent 3D ob-
jects. They sample grid TSDF and apply multi-scale wavelet

decomposition to generate both coarse and detailed wavelet
coefficients. The diffusion model is applied to the coarse co-
efficient grids, which are refined by a detail predictor module.
An explicit 3D representation can be obtained through an
inverse wavelet transform on the detailed coefficients. Hu and
Hui et al. [133] extend this framework for shape inversion
and shape manipulation processes by adding a latent shape
code as the condition in the denoising stage.

Since a high-resolution SDF grid is both memory and com-
putationally expensive, LAS-Diffusion [134] uses a two-stage
diffusion network: the first stage generates a low-resolution
occupancy field to approximate the rough shape and the sec-
ond stage generates detailed SDF values inside the occupied
region. To incorporate 2D sketches for conditional genera-
tion, LAS-Diffusion introduces a view-aware local attention
mechanism that uses local patch features of the input sketch
to interact with the voxel feature via cross-attention.

HyperDiffusion [135] first applies diffusion models in MLP
weight space and generates neural fields by predicting their
weights. It first overfits a set of MLPs to faithfully represent
individual dataset instances. The parameters are later sent to
train the denoising network. The HyperDiffusion architecture
supports both 3D shape generation and 4D mesh animation
thanks to the flexibility of the weight space design.

DiffComplete [136] leverages diffusion models with vox-
elized TSDF and TUDF for 3D shape completion tasks. It
formulates the completion task as TSDF shape generation
conditioned on incomplete shapes. Instead of using the time-
consuming cross-attention mechanism, DiffComplete uses
an independent conditional branch to encode the incomplete
corrupted shape conditions into the voxelized TSDF. As in
ControlNet [125], the condition branch is merged with the
TUDF voxels in the main branch by simple voxel addition.

For scene-level generation, DiffRoom [137] learns the de-
noising process on the cropped sparse room space with TSDF
representation. It adopts a two-stage curriculum learning strat-
egy, which first uses TSDF extracted by NeuralRecon [138]
and then Gaussian noise as condition signals to train the 3D
sparse denoising networks. For scene generation, DiffRoom
splits the whole scene into overlapping crops and utilizes
stochastic fusion on the crops to generate the final room
geometries.

6.4 3D Diffusion using Explicit Representation

Diffusion models applied to explicit representations largely
target point clouds. DPM [139] introduces a diffusion model
to directly generate point clouds with a target shape code as
the condition. It parameterizes the prior distribution of shape
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codes p(z) using a normalizing flow and learns it end-to-end.
An additional lossLz is added to control the latent distribution
of generated point cloud x0 in the VAE close to p(z):

Lz = DKL(qϕ(z|x0)||p(z)) (21)

Kong et al. [140] extend DPM’s network architecture for
sketch-to-point cloud generation. They replace the condi-
tional shape codes with sketch embedding and apply an
adversarial loss to further refine the diffusion process. Later,
PVD [141] directly trained a DDPM on point clouds by using
the PVCNN [117] architecture as the denoising backbone,
which voxelizes the point clouds for 3D convolution. With the
unified 3D structure, PVD can handle both 3D point cloud
generation and completion by varying training objectives.

Beyond unconditional generation, Point-E [128] provides
the first framework for text-to-point cloud generation. A 2D
image given a text prompt is first generated as the condition
for the denoising process. It employs a transformer network
as the denoising backbone with both noise inputs and image
fed in as tokens. The generation process is cascaded: a 1K
point cloud with the LR diffusion model is first generated and
then a hierarchical upsampling network conditioned on the
base points produces the final 4k point cloud.

STPD [142] combines sketch and text conditions to gain
better control over point cloud generation. The sketch and text
embeddings are fused through cascaded attention networks
to create geometry and appearance conditions Cg, Ca. It
generates point clouds by disentangling geometry component
g0 and texture component c0. The generation process contains
two stages, each of which is a conditioned diffusion process:
the geometry stage learns the distribution of pθ1(g0|Cg) and
the texture stage learns pθ2(a0|g0, Ca).

Point clouds can also be used as an intermediate representa-
tion for 3D generation. SLIDE [129] generates diverse meshes
by generating point clouds first and then reconstructing sur-
faces from them. It uses a point cloud autoencoder consisting
of an improved PointNet++ [143] to encode input point clouds
as sparse points and hierarchical point up-sampling modules
to recover point clouds of the original size. Then it learns the
distributions of point positions and point features with two
separate DDPMs for controllable generation.

HOLODiffusion [144] learns a diffusion model over the
distribution of 3D voxel grids using 2D images as supervi-
sion. Specifically, it generates intermediate 3D-aware features
conditioned only on the posed input images and applies 3D
UNet to remove the noise added to this intermediate represen-
tation. The denoising loss is defined as the photometric error
between rendered and input images. Based on HOLODiffu-

sion, HOLOFusion [145] additionally trains an upsampling
diffusion model to increase the quality of generated shapes.

DiffFacto [146] further studies part-based point cloud gen-
eration and editing with diffusion models. The whole pipeline
consists of three parts: it first learns the latent codes z from
each part of shape S. Then it fits the distribution of part
transformation P (T|z) conditioned on part latent informa-
tion. Finally, DiffFacto models the conditional distribution
P (S|z,T) to sample part-level point clouds with a cross
diffusion network, in which the cross attention layer pays
attention to to m (number of parts) tokens each being the
concatenation of (xt, z, Ts, j, t). The training objective of the
diffusion model is:

Lrecon =

m∑
j=1

∑
x∈Sj

Eϵ,z,t[||ϵ− ϵϕ(xt, z, Ts, j, t)||22] (22)

Other than using point clouds, DiffRF [126] was the first
approach to apply diffusion models to directly generate neural
fields. It utilizes an explicit voxel grid as a NeRF to represent
3D objects. It first fits the explicit grid to input multi-view
images using neural volume rendering. When training dif-
fusion models, it combines the denoising loss in diffusion
models and weighted RGB rendering loss in each time step
using a time-conditioned 3D UNet.

GVGEN [147] and GaussianCube [148] train diffusion
models to generate 3D Gaussians. Both found that directly
generating all attributes of 3D Gaussians is challenging and
proposed to anchor the Gaussians’ positions first.

7 Open-Source 3D Datasets
3D datasets are essential for diffusion-based 3D-3D genera-
tion: diffusion models need sufficient training data to learn
the prior distributions of 3D representations. Here we list and
categorize open-source datasets widely used in 3D generation.
Some [105, 120, 128] rely on their own sizable collections of
3D object data.

7.1 Datasets of Objects

ShapeNet [149] (including ShapeNetSem and ShapeNetCore)
is the most widely used dataset in diffusion-based 3D-3D
generation applications. It contains nearly 3M textured ob-
jects in 3,135 categories. Its subsets, such as cars, chairs,
and planes, are frequently used in per-class generation tasks.
Acronym [151] provides watertight meshes across 262 cate-
gories, produced from the original ShapeNet dataset, making
it easy to convert them to other representations, e.g., SDF.

ModelNet [150] also provides a large number of models
for 3D deep learning. It contains 151,128 objects belonging
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Table 2 Datasets for Diffusion-based 3D Object Generation
Dataset Year Data Type Categories Size Source of 3D Data
ShapeNet [149] 2015 mesh with texture 3135 3,000,000 synthetic
ModelNet [150] 2015 mesh 660 151,728 synthetic
Acronym [151] 2021 Watertight mesh 262 8872 synthetic
Objaverse [109] 2023 mesh with texture - 800,000 synthetic
BuildingNet [152] 2021 mesh 5 2,000 synthetic
RedWood [153] 2016 mesh - - scanned
YCB [154] 2015 mesh 5 75 scanned
PhotoShape Chairs [155] 2018 mesh 1 29,133 synthetic
ABO [156] 2022 mesh 63 147,702 reconstructed
Text2Shape [157] 2019 voxel-text pair 2 15,038 synthetic
ShapeGlot [158] 2019 mesh-text pair 1 7,000 synthetic
Pix3D [159] 2018 image-mesh 9 395 synthetic
Co3D [160] 2021 videos 50 18,619 scanned
MVImgNet [161] 2023 image-point cloud 238 219,188 scanned

Table 3 Datasets for Diffusion-based 3D Scene Generation
Dataset Year Data Type Size Source of 3D Data
Matterport3D [162] 2017 images with annotations 10,800 views with 194,400 images scanned
Realestate10K [163] 2018 images 10M images website
CLEVR [164] 2017 images with questions 100K images, 853K questions synthetic
LHQ [165] 2021 images 91,963 images nature
ARKitScenes [166] 2021 images 5047 captures scanned
VizDoom [167] 2016 synthesized scenes 1 configurable scene synthetic
Replica [168] 2019 mesh with texture 18 scenes scanned
Carla [169] 2017 synthesized scenes 2 scenes synthetic

to 660 unique categories and is thus widely used in various
3D tasks, e.g., 3D object classification.

Objaverse [109] is a recent large 3D dataset with nearly
800K textured objects and corresponding captions. It has been
widely utilized in pretraining neural networks for various 3D
tasks, such as 3D generation [106] and 3D segmentation [170].

BuildingNet [152] provides nearly 2K building objects with
more than 513K annotated mesh primitives.

RedWood [153] contains more than 10K objects along with
23M images scanned from the real world.

YCB [154] reconstructs meshes from 600 scanned RGBD
images and contains 75 high-quality objects in total.

PhotoShape Chairs [155] provides more than 29,000 syn-
thetic relightable chair objects with photorealistic materials.

Amazon Berkeley Objects (ABO) [156] contains more than
140K models of 63 kinds of products on Amazon shopping
websites. Like ShapeNet, diffusion models are usually trained
with a single category such as tables from the ABO dataset
for 3D-3D generation tasks.

Datasets with shape-text pairs can be used in training
diffusion models conditioned on text prompts.

Text2Shape [157] provides captions for chair and table
subsets in ShapeNet and contains nearly 75K shape-text pairs.
A hybrid sampling strategy is applied to voxelized 3D mesh

objects.
ShapeGlot [158] also provides more than 70K utterances

for the ShapeNet chair subset. Each prompt is accompanied
by additional distractors.

Some methods utilize 2D-3D reconstruction datasets for
image-conditioned 3D-3D generation.

Pix3D [159] provides well-aligned real-world image-shape
pairs containing 10697 images and 395 shapes. Each 3D
shape is associated with a diverse set of images and has a
precise 3D pose annotation.

FFHQ [123] and AFHQ [171] provide a large number of
various high-resolution human and animal faces respectively.
They are widely used in GAN-based generation tasks and can
be used as sources of image-conditioning for diffusion models.
FFHQ contains 70,000 images varying of age, ethnicity, etc.
AFHQ comprises AFHQ-Cat, AFHQ-Dog, and AFHQ-Wild,
each containing 15,000 images.

Co3D [160] focuses on providing a tremendous range
of real-world objects. It contains almost 19,000 videos in
50 categories, with accurate camera parameters checked
manually.

MVImgNet [161] provides multi-view images of 219,188
real-world objects in 238 classes. Each object also contains
annotations, including masks and scanned point clouds.
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Among the above, Objaverse [109] is currently the
most used dataset for object generation. Co3D [160] and
MVImgNet [161] are also becoming popular because they
contain backgrounds.

7.2 Datasets of Scenes

For scene generation, popular 3D scene datasets include the
following.

Matterport3D [162] provides 10,800 panoramic views of
90 large real world indoor scenes. It contains comprehensive
annotations of view camera poses, surface reconstructions,
and 2D & 3D semantic segmentation results.

Realestate10K [163] provides timestamps and camera tra-
jectories for more than 10 million images from videos on
YouTube based on SLAM algorithms. It collects images in
the real estate category, and features both indoor and outdoor
scenes.

CLEVR [164] is a diagnostic dataset aiming at testing
visual-question answering (VQA) systems in visual reasoning
tasks. It contains 100K rendered images of annotated 3D
objects and nearly 853K unique questions.

LHQ (Landscapes High-Quality) [165] contains 91,693
high-resolution natural landscapes, each with resolution
higher than 10242. The raw images were collected from
Unsplash and Flickr websites and then filtered by a blacklist
of keywords and a Mask R-CNN network in turn.

Vizdoom [167] is a Doom-based platform for reinforcement
learning and provides a simple scene setting.

Replica [168] consists of 18 high-quality real-world in-
door scene reconstructions, each containing high-resolution
meshes, HDR texture and per-primitive semantic class and
instance information.

ARKitScenes [166] provides more than 5K indoor scans
with rendered images and depth maps along given trajectories,
captured by Apple’s LiDAR scanner. Reconstructed surfaces
and corresponding object bounding boxes are also accessible
in ARKitScenes.

CARLA [169] is an open-world simulator specifically de-
signed for studying autonomous driving. CARLA is imple-
mented based on the UE4 engine and contains two scenes
containing 40 buildings, 16 vehicles, and 50 pedestrian mod-
els.

8 Future Directions
In this section, we highlight current challenges and potential
research directions for 3d generation by diffusion models.

8.1 Generation Quality

Unlike 2D generative models that can synthesize realistic
images almost indistinguishable from real ones, the quality
of generated 3D output still remains unsatisfactory.

Methods that extract 3D representations from pretrained
2D diffusion models have results fully determined by these 2D
models. By harnessing the capabilities of these 2D models,
current methods can synthesize detailed and fairly realistic
3D models of diverse kinds of objects, pose variations and
artistic styles. They can even deal with intricate and abstract
textual prompts, such as ‘a robot and dinosaur playing chess’.
Nonetheless, these approaches are susceptible to issues like
the multi-face Janus problem, which is known to be associated
with the training data distribution of the 2D diffusion models.

Methods trained on 3D data are often constrained to gen-
erating relatively simple objects and exhibit over-smooth
textures due to their heavy reliance on existing 3D datasets,
which, unfortunately, comprise mostly basic objects. Also,
these methods are mostly trained on a single class of objects
and haven’t demonstrated the ability to generate in-the-wild
objects. Recently, Objaverse-XL [172] was introduced to in-
clude over 10 million diverse 3D objects. Future works might
explore how to utilize this large dataset to push the limits of
3D generation. This requires work on several issues, including
architectural design, data representation and training strategy.

Only a few methods deal with scene-level generation. Ex-
isting works have explored compositional generation, iterative
generation and synthesizing a long trajectory from a 2D im-
age. However, they often require dedicated design (depth
warping, inpainting etc) to create a valid scene. This process
is not always successful: the resulting geometry may contain
artifacts like holes or distortion, and the texture may be over-
smooth or view-inconsistent. Moreover, it is more challenging
to generate reasonable geometry for outdoor scenes, as they
are more complex and have drastic depth continuities. Further,
there is no work to train on 3D scenes, to generate scene as-
sets directly, possibly because of insufficient scene-level data
and high computational load. Future work can explore scene
generation with flexible user control, material decomposition
from lighting and better generation quality.

8.2 Efficiency

Utilizing pretrained diffusion models for 3D scene generation
introduces certain challenges in terms of both efficiency
and resource requirements. These methods necessitate per-
scene optimization for many iterations for every provided
prompt, a procedure that can potentially take hours to achieve
satisfactory geometry. Moreover, they often require more
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than 20 GB of GPU memory. Although ATT3D [36] turns
optimization into direct inference, generation is limited to the
training set and it cannot handle arbitrary prompts. Multi-
view generation followed by a reconstruction pipeline has
greatly speeded up the generation process, with GECO [65]
further achieving feedforward generation by distilling multi-
view diffusion models into one-step. However, the results
are still limited by multi-view generation. As for methods
training on 3D representations, the training process often
takes several days to converge since the diffusion process uses
high-dimension data. Also, many of them include various
data processing steps, e.g., training an auto-encoder for 3D
shapes. After training, 3D shapes can be obtained via direct
inference.

8.3 Evaluation Protocol

Evaluation of 3D generation has always been challenging
since there is no ground truth data to compare with. No direct
metric can measure how ‘good’ a 3D model is. Methods
trained on 3D datasets often use Fréchet Inception Distance
(FID) and Inception Score (IS) to evaluate image quality, and
use Coverage Score (COV) and Minimum Matching Distance
(MMD) with Chamfer Distance (CD) to evaluate geometric
quality. However, these metrics are limited to simple, single-
class objects.

For zero-shot text-to-3D generation, existing methods use
CLIP R-Precision to measure the consistency of rendered
images and text prompts. There are no suitable metrics to
quantify view consistency and geometry quality of 3D assets.
It is also essential to have a diverse and representative test set
covering different objects and scenes to fairly evaluate the ca-
pabilities of the generative models. Recently, T3-Bench [173]
partly addresses this problem by providing a benchmark
of 100 prompts and employing text-image scoring models
(e.g., CLIP) to detect the consistency of rendered 2D views.

8.4 Towards Real-world Applications

Generated 3D assets are not yet suitable for practical real-
world applications. Unlike 2D generation, where output im-
ages can be easily edited using well-established photo-editing
tools, 3D generation involves the optimization of geometry
and structure through neural networks, making the editing
of generated assets more challenging. Moreover, these assets
may not fully encompass the logical and operational nuances
of 3D modeling as understood by human experts. Addition-
ally, current methods for 3D generation lack the necessary
flexibility to allow precise control and editing of the finer

details of the output. Consequently, modifying AI-generated
3D models is still challenging, especially for amateurs.

9 Conclusions
3D generation has captured significant attention in recent
years and has made notable advances through the evolution
of diffusion models. In this survey, we have systematically
reviewed and summarized recent works on 3D generation
utilizing diffusion models. We first outlined the foundational
concepts of diffusion models and 3D data representations.
Subsequently, we reviewed existing works according to how
they use diffusion and whether they exploit pretrained diffu-
sion models. We discussed the advantages and disadvantages
of different works, indicating the architecture, and shown
results for representative methods. Additionally, we summa-
rized widely employed datasets for training 3D generative
models. We finished by outlining potential directions for
future research. As the first survey on 3D generation with dif-
fusion models, we hope this paper offers researchers a concise
overview of relevant works and the path of development. We
also hope our survey will inspire more researchers to delve
into this domain and contribute more advanced techniques.
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